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Abstract

Recent years have witnessed the advancement of 3D printing in fabricating objects
with sophisticated and highly-customized geometries. The print services are now
widely available through online orders, home printers and local FabLabs. Nevertheless,
it remains difficult for most users to create interesting objects, even more so when
the intended design has complex geometry details. To circumvent this issue, in this
thesis we present approaches to automate the task of designing and fabricating artistic
patterned surfaces.

We firstly present a novel approach to synthesize fabricable filigrees over target
surfaces. As thin patterns widely found in jewelry, ornaments and lace fabrics, filigrees
are often manually designed by composing repeated base elements. Our technique
aims to automate this challenging task. Our technique covers a target surface with
a set of input base elements, forming a filigree strong enough to be fabricated. We
leverage the fact that as traceries, filigrees can be well captured by their skeletons.
This affords for novel energy function that measures the matching quality between base
elements. In addition, instead of seeking for a perfect packing of base elements, we
relax the problem by allowing appearance-preserving partial overlaps. The formulation
is optimized by a stochastic search, which is further improved by a boosting step
that records and reuses good configurations discovered during process. Our technique
affords for multi-class synthesis and several user controls, such as scale and orientation
of the elements.

Second, we extend the method to generate complex – yet easy to print – tile
decorations. The user only provides base surface and a set of tiles. Our algorithm
automatically decorates the base surface with the tiles. However, rather than being
simple decals, the tiles become the final object, producing shell-like surfaces that can
be used as ornaments, covers, shades and even handbags. Our technique is designed
to maximize print efficiency: the results are printed as independent flat patches that
are articulated sets of tiles. The patches could be assembled into the final surface
through the use of snap-fit connectors. Our approach proceeds in three steps. First,
a dedicated packing algorithm is proposed to compute a tile layout while taking into



x

account fabrication constraints, in particular ensuring hinges can be inserted between
neighboring tiles. A second step extracts the patches to be printed and folded, while
the third step optimizes the location of snap-fit connectors. Our technique works on
a variety of objects, from simple decorative spheres to moderately complex shapes.

[401 words]
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Chapter 1

Introduction

1.1 3D Printing
3D printing is a manufacturing process where physical objects are fabricated by
forming successive layers of materials one upon another (Figure 1.1) under the control
of computer program. It was firstly developed in early 1980s and commonly known
as rapid prototyping or additive manufacturing in the commercial industry.

Figure 1.1 3D Printing. Object is printed by solidifying successive layered materials.

A typical 3D printing process starts from a digital model, which could be either
created by computer-aided design (CAD) softwares or acquired from 3D scanners.
Before fabrication, the input model will be examined for geometric errors, e.g. self-
intersections, holes, flipped face normals or manifold errors. If passed, the obtained
model will be processed by slicer, a software designed to turn a 3D model into a series
of thin layers that would be sequently substantialized by 3D printer. The slicer also
generates a G-code file that contains operational introductions tailored for a specific
type of 3D printer.
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The type of a 3D printer is mainly defined by the technology that it uses to deposit
layers. One major type of printing methods seeks to melt or soften the material so
as to extrude layers, for instance, fused deposition modeling (FDM), selective laser
sintering (SLS), selective laser melting (SLM), electronic beam melting (EBM) or
fused filament fabrication (FFF). Some methods add layers via solidifying liquid
materials, e.g. stereoradiography (SLA) and digital light processing (DLP) while the
others cut thin layers to desired shape and join them together, e.g. laminated object
manufacturing (LOM). An exhaustive investigation of all printing processes is out
of the scope of this thesis. We therefore only briefly introduce 3 popular types of
printing technologies: FDM, SLS and SLA.

FDM is the most widely-used printing method in desktop 3D printers. Thermo-
plastic filament is heated and extruded throughout nozzle onto the building plate.
The dimensions of an object is translated by computer into X, Y and Z coordinates
which are used to calculate the moving paths of nozzle and platform. The object
is essentially built from the bottom up. Therefore, if the target object contains
overhanging parts, supporting structures are required during printing and need to be
removed when printing is completed. FDM printers is the most cost-effective means
for home-DIY’ers, education sectors and small business to prototype designs and
develop products. Figure 1.1 demonstrates an FDM printer printing in progress.

SLS printers build object from powdered material in the build area. Layers
of granules are selectively sintered by laser and then bound together to form solid
structures. The object is left to cool in the building volume when it is fully constructed.
Cleaning of attached powders is required after the object is removed from machine.
As the object is printed constantly surrounded by unsintered powder, SLS doesn’t
require any support structures during printing. SLS has been widely used in rapid
prototyping in commercial industries. However, as SLS printer requires the use of
expensive high-powered lasers, it is a bit beyond the reach of average consumers.

SLA creates object by exposing photosensitive liquid resin to a laser-beam so that
the resin hardens and solidfies in target shape. Similar to FDM, each new layer in
SLA is built on top of preceding one. Hence, support structure is required when
objects with overhanging parts are printed with SLA printer. SLA can produce
smooth surface with extreme details and is thus popular in jewelry fabrication and
cosmetic dentistry for building castable molds.

The advent of 3D printing opens a new era of manufacturing. It enables designers
to create and fabricate complicated parts and shapes, many of which are hard to be
produced (left one in Fig. 1.2) by conventional manufacturing technologies. In addition,
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Figure 1.2 Objects fabricated by 3D printing. Images in courtesy of WikiMedia.

3D printing allows for great flexibility in customizing the fabrication. Changes of
design are performed digitally without additional tooling or other manufacturing
process required for the final product. Each item can be easily customized according
to user’s needs in terms of both shapes and colors (middle and right figures of
Fig. 1.2). The flexibility offered by 3D printing has significantly accelerated the speed
of prototyping and soon become the prior option for designers and entrepreneurs
who seek to test production runs. Common users could also have easy access to 3D
printing, through online print services, home printers and local Fablabs.

Despite the rapid advances in 3D printing technology, it remains difficult for
most users to design interesting objects, especially when the intended design contains
complex geometries. There is a significant research effort dedicated to automating
the customization of shapes. For instance, researchers have developed tools on
balancing shapes [35], creating spinbale objects [2], designing wind instruments
[24, 46], lampshades [59] and helping users maintain fabricability during modifications
[41]. These research works have greatly broaden the applications of 3D printing and
made it more accessible to common users.

1.2 Surface Patterning
Thanks to 3D printing, sophisticated geometries can be printed with ease, paving
the way to customize personalized designs. Among the needs of customization,
designing decorative patterns over surface has been keenly pursued by designers,
architects and even home-users. Patterned surface has been carefully designed and 3D
printed as curtain wall of buildings, lampshades and object covers (Figure 1.3). The
intriguing details turn a bland base surface into a unique piece of artwork. However,
customizing 3D objects is still a difficult task for non-expert users, for all but very
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simple modifications. Several modeling software, e.g. AutoCAD, Autodesk Maya,
3DS Max, MeshMixer, Rhinoceros et al., have been developed to assist the job of
creating and modifying extended designs. Professional skills are required in order to
exploit the functions of the above tools. However, even for an expert in modeling, it
would need hours or even days to complete a design as complex as those in Figure 1.3.

Figure 1.3 Surface customization is highly demanded in artistic design. Images in courtesy
of Pinterest.

Methods to automate the design of fabricable patterned surface are rarely explored
in both industry and academia. Recenlty, Dumas et al. [10] proposed a method to
synthesize a fabricable pattern along a surface. It starts from a stochastic pattern
defining solid/void regions. The approach modifies textures synthesis to account for
structure and rigidity and synthesizes printable 3D patterns with similar appearance
with exemplar. Martinez et al. [28] investigated automatic 2D shape design under
rigidity and appearance objectives. The user inputs a pattern example. Their method
generates a rigid shape with a specified quantity of materials while allowing the
appearance of output structure to resemble the input pattern.

The related work mentioned above pioneers in producing intricate surface with user-
specified exemplar. However, while these techniques excel at generating stochastic,
organic patterns, they cannot properly capture relatively large individual elements. In
addition, they only accept one kind of input exemplar, limiting the design space that
user can explore. In this thesis, we will present works that aim to synthesize a wider
variety of elements and provide methodology to fabricate sophisticated geometry
efficiently with low-end filament 3D printers.

1.3 Contribution
The contributions of this thesis are summarized as below:

• We present a novel approach to automate synthesizing filigree elements over
target surface with optimized structural rigidity. We exploit two properties
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of filigrees to make it possible. First, as filigrees form delicate traceries, they
are well captured by their skeleton. This affords for a simpler definition of
operators such as matching and deformation. Second, instead of seeking for a
perfect packing of base elements, we relax the problem by allowing appearance
preserving partial overlaps. We optimize a filigree by a stochastic search, further
improved by a novel algorithm that records and reuses good configurations
discovered during process. Our technique affords for multi-class synthesis and
several user controls, such as scale and orientation of the elements. This work has
been published in SIGGRAPH’16. Please refer to http://i.cs.hku.hk/~wkchen/
projects/proj_sig16.html for more details.

• We propose a method to generate tile decoration on surface that could be
fabricated by low-end filament printers. The user only provides base surface and
a set of tiles. Our algorithm automatically decorates the base surface with the
tiles. However, rather than being simple decals. the tiles become the final object,
producing shell-like surfaces that can be used as ornaments, covers, shades and
even handbags. Our technique is designed to maximize print efficiency: the
results are printed as independent flat patches that are articulated sets of tiles.
The patches could be assembled into the final surface through the use of snap-fit
connectors. A dedicated packing algorithm is proposed to compute a tile layout
while taking into account fabrication constraints, in particular ensuring hinges
can be inserted between neighboring tiles. A patch generation step extracts
the patches to be printed and folded, which is followed by a third step that
optimizes the location of snap-fit connectors. Our technique works on a variety
of objects, from simple decorative spheres to moderately complex shapes.

1.4 Organization
We organize the remainder of this thesis as follows: Chapter 2 introduces the algorithm
of synthesizing filigree patterns over target surface while the details of generating
fabrication tile decorations are stated in Chapter 3. In particular, we firstly discuss
the background and previous work in each chapter and then introduce the method,
results and implementation details. Finaly, we conclude the thesis and future work in
Chapter 4.

http://i.cs.hku.hk/~wkchen/projects/proj_sig16.html
http://i.cs.hku.hk/~wkchen/projects/proj_sig16.html




Chapter 2

Synthesis of Filigrees for Digital
Fabrication

2.1 Introduction
Filigrees are fascinating ornamental patterns, forming delicate and intricate traceries
in space. Their unique aesthetics emerge from the repetition of similar elements
arranged in larger patterns, suggesting shapes and volumes. Filigrees often appear as
jewels made of thin gold or silver wires, bended and soldered together; but they also
appear as laces and finely engraved drawings on glass panels and metal plates. Due
to their intricate and delicate nature, fabricating filigrees is an art reserved to few
artists mastering highly specialized crafting skills.

The advent of digital fabrication technologies such as 3D printing and laser cutting
holds the promise to make these traditional art forms more accessible, and to apply
them in contexts that would not be achievable by traditional means. Three such
examples are the sculptures Crania Anatomica Filigree by Joshua Harker [12], the
magnificent Seashell dress by Fashion House SHIGO [6], and the concrete filigree
enclosing the MuCEM museum [36].

While digital fabrication simplifies the physical realization of filigrees, a digital
model is required before fabrication. In this paper we aim at providing algorithms
that can assist the process of modeling filigrees. In particular we focus on the most
time consuming task, which is to cover a target surface with a large number of basic
elements, while enforcing connectivity and fabrication constraints.

At a high level our approach replicates the traditional filigree design process:
The user inputs a set of basic filigree elements that are then automatically repeated,
distributed and assembled into a larger pattern covering the target surface. Our



8 Synthesis of Filigrees for Digital Fabrication

algorithm strives to preserve the appearance of each individual element, joining them
in natural ways. The produced filigrees are fully connected and optimized to minimize
fragilities, and are ready for 3D printing. In addition our technique provides many
user controls: multiple base elements can be specified; orientation and scale fields can
be defined along the target surface.

At a technical level, we solve for an element packing problem along the target
surface. Tightly packing elements of arbitrary shapes along surfaces is extremely
challenging. To achieve this task we exploit two specific properties of our problem.
First, filigrees are well described by their skeletons, allowing for simple manipulations
such as detecting overlaps, performing local deformations or pruning spurious branches.
Second, the repetitive nature of filigrees affords for additional degrees of freedom.
Elements can be partially overlapped in inconspicuous ways, relaxing the packing
problem. We formalize the quality of pattern overlaps through a novel partial Pattern
Matching Energy (PME) based on the modified Hausdorff distance. We exploit
this energy in a stochastic optimization scheme. Starting from a dense packing of
many elements — guaranteeing full connectivity but having many overlaps — we
progressively refine the result. Refinements are performed through local optimization
of element positions, accepting overlaps having a low matching energy. Through a
limited amount of deformation our technique preserves the global connectivity of
the pattern while resolving overlaps. A key component of our technique is a novel
approach for recording and reusing good configuration between pairs of elements.
We call this approach boosting as it progressively encourages good matches and
good overlaps to appear. Structural properties are jointly optimized by encouraging
additional connections to appear in fragile areas.

2.2 Previous Work
Texture synthesis The goal of by-example texture synthesis is to reproduce a
colored pattern resembling a small exemplar given as input. This is typically done for
texture images, generating larger extents of pattern while avoiding obvious periodicities
[53]. Several algorithms are able to synthesize a texture from an example along a
surface, e.g. producing per-vertex colors along a dense mesh [45, 54], directly in
texture maps [57, 22], or by covering the model with patches [34]. Mesh Quilting [60]
extend these techniques to geometry: the input texture is a patch of geometric texture
that is used to cover a target surface. It is expected that the left/right top/bottom
boundaries contain similar, repeating content. The surface is covered by placing each
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patch in sequence, cutting its content to best match previously placed patches. The
approach is not designed to work for individual elements, and without repeating
features it cannot find good cuts to resolve seams. It therefore does not apply to the
context of our approach. Zhou et al. [62] consider the synthesis of patterns along
curves while constraining the topology of the result. This allows the fabrication of
singly connected ornaments along curves, but does not extend to higher dimensions
(2D/3D).

Closer to our purpose, the work of Dumas et al. [10] synthesizes a fabricable
pattern along a surface. The input is a stochastic pattern defining solid/empty
regions. The approach takes into account structural properties and fabrication
constraints. Martinez et al. [28] investigate automatic shape design under rigidity
and appearance objectives. The appearance is defined by an input exemplar pattern.
While these techniques excel at producing stochastic, organic patterns, they cannot
properly capture relatively large individual elements. This stems from the Markov
Random Field assumption that limits appearance to a local definition. Li et al. [25]
use field-guided shape grammars to synthesize geometric patterns. The grammar
rules are manually designed from input patterns. However, this approach would
generate artifacts when patterns are densely placed, limiting its application for digital
manufacturing.

Several approaches have been proposed that focus specifically on the synthesis of
element arrangements, e.g. [27, 14]. The input captures both a set of disjoint elements
and their spatial relationships. A similar distribution of non-overlapping elements is
synthesized. In contrast our work inputs only a set of independent elements — there
is no target spatial arrangement specified in the input for our algorithm to mimic —
and our technique exploits potentially large overlaps between elements for generating
fully connected filigree patterns. In addition, as we target fabrication the connectivity
between patterns is crucial to ensure the rigidity of the final printouts.

In concurrent work Zehnder et al. [55] synthesize filigrees by packing curved
elements along surfaces. The approach provides an interactive authoring tool that can
automatically generate an initial packing. The curves elastically deform, and their
positions are optimized to reduce deformations while enforcing contact and sizing
constraints. The system reveals weak areas that the user can reinforce by interactive
editing. The elements are not allowed to overlap and may be large compared to the
surface curvature. In contrast we focus on fully automatic synthesis with large numbers
of curve elements, exploiting overlaps and reinforcing the structure automatically.



10 Synthesis of Filigrees for Digital Fabrication

Both approaches are complementary and the deformation analysis and optimization
in Zehnder et al. [55] would benefit our work.

Structural analysis for fabrication Our technique considers the structural prop-
erties of the final object. Several techniques have been proposed to help user identify
and fix weaknesses of an input object. Stava et al. [43] automatically add struts to
an object after identifying weakness by the finite element method. Zhou et al. [61]
perform a worst case analysis to identify weak regions of a 3D print without prior-
knowledge of external forces. Umetani and Schmidt [47] perform a fast, interactive
cross sectional analysis to present the user with a weakness map. Our work performs
a structural analysis that is specifically tailored to our needs, simulating the external
surface with shell elements. Instead of adding visible struts, we locally change the
thickness of the filigree and add more elements to locally reinforce the filigree.

2.3 Filigree Synthesis

2.3.1 Terminology

First we fix the terminology. A filigree pattern refers to a design layout of curvilinear
strips, often called traceries. A basic filigree pattern used to compose a large pattern
is called a filigree pattern element, or element for short. An element often again
consists of individual curvilinear strips, which will be called branches.

2.3.2 Input and Output

The input to our synthesis algorithm consists of some 2D exemplar filigree elements
and a base surface serving as the output domain for filigree synthesis. The output
is a visually pleasing filigree layout over the base surface which is composed of well-
connected and partially overlapping duplicates of the exemplar element, thus making
the synthesized pattern have a similar style to the input exemplar elements. The base
surface may be equipped with a user-specified control field which dictates how the
composing elements should be oriented and scaled over the base surface.

2.3.3 Medial Axis Representation

A typical filigree pattern consists of connected curvilinear strips, as shown in Fig-
ure 2.2a. For any filigree pattern, because of the curvilinear nature of its constituent
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(a) Initialization (b) Placement Optimization

(c) Boosting (d) Topology Cut

(e) Structural Optimization (f) Reconstruction

Figure 2.1 Filigree synthesis pipeline. We first (a) generate an initial element distribution
over the base model (the input element is shown on the right bottom); (b) the placement
of element is first optimized using stochastic search with connectivity constraints; then
followed by (c) a boosting step to improve overall element distribution. (d) Topology cut is
applied to trim off conflicting branches. (e) Structural optimization strengthens the weak
regions via adding new elements. (f) A final model is reconstructed that is ready for digital
fabrication.
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(a) (b)

Figure 2.2 (a) A typical filigree pattern consists of connected curvilinear strips. (b) The
skeleton graph of the filigree element in (a).

strips, we will use the medial axis of the pattern to represent its main skeletal struc-
ture, and call its medial axis the skeleton graph of the pattern. To simplify geometric
processing tasks during filigree synthesis, we will mainly work with the skeleton graphs
of filigree patterns and approximate the skeleton graphs by polygonal curves with
user-specified accuracy, as shown in Figure 2.2b. Towards the end of our algorithm,
we will obtain a large skeleton graph that can be viewed as the medial axis of the
synthesized filigree design. By recovering width to convert this large skeleton graph
into connected strips, we yield the final synthesized filigree design on the base surface
(see Figure 3.12d).

2.3.4 Requirements

It is required that the synthesized filigree elements need to be connected into a single
piece with sufficient mechanical strength. We encourage two types of connections
to ensure preservation of the style of the exemplar filigree element: (1) tangential
connection, which means smooth and natural contacts between the branches of
adjacent elements (see Figure 2.3a); and (2) partial overlapping with matching shapes,
in which case two adjacent elements overlap partially, and the geometrical shapes of
the two elements match well within the overlapping region (see Figure 2.3b). The
quantitative measurement of shape matching will be elaborated later.

2.3.5 Pipeline Overview

The pipeline of our synthesis algorithm has the following main steps, as shown in the
flowchart in Figure 2.1.
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(a) (b)

Figure 2.3 (a) Tangential connection. (b) Partial overlap.

Step 1: Initialization In the initialization step, the duplicates of the exemplar
filigree element are distributed over the base surface using a blue-noise sampling
method. This initial distribution takes into consideration the control field as well
as the unbiased selection of input elements in the case where multiple basic filigree
elements are provided. The resulting distribution of the filigree elements at this
stage ensure sufficient coverage of the base surface and close connection between
the elements, but are visually unsatisfactory since the pattern elements overlap in a
random manner.

Step 2: Placement optimization In this step we locally adjust the positions
and shapes of all the filigree elements to achieve visually more pleasing connections
between elements, while preserving the surface coverage and inter-element connectivity.
Two kinds of operations are performed in this stage to improve the visual quality of
the connections between adjacent elements: (a) Position adjustment: Two elements
that overlap partially will have their relative positions adjusted by small translational
displacement to achieve a better matching of their shapes within the overlapping
region. (b) Forcing tangency: If two elements are nearly in tangential contact between
their curvilinear branches, then the elements are brought into tangent contact via
non-rigid deformation.

Step 3: Boosting The local search method employed in the preceding step is easy
to get stuck in a local minima. A simple but effective modification is to iteratively
call the local search routine, but starting from a different initial configuration at
each time. We, therefore, propose a boosting step to improve the overall pattern
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distribution via learning good relative positions between element pairs. The candidate
pairs are progressively recorded in a database when numerous position adjustments
are attempted in Step 2 on placement optimization. Any pair of neighboring elements
that cannot be put in a good connection will be replaced by a better-connected pair
that is learnt from the database. The output element distribution will be fed back to
the second step in an iterative manner.

Step 4: Topology cut While satisfactory connections can be achieved for most
pairs of adjacent elements, some pairs of adjacent elements may still have unacceptable
connections with each other despite the efforts on improving partial overlap in step
2 and 3, as shown as Figure 2.1d. This is typically manifested by some conflicting
branches of the elements that intersect each other, causing undesired visual artifacts.
To fix this, we apply an topology cut operation to trim off the conflicting branches
with lower importance.

Step 5: Structure optimization The skeleton graph obtained after topology
cut is first converted into surface mesh representation by adding the width to the
curve segments of the graph. The filigree design obtained is connected and visually
satisfactory, but may lack needed mechanical strength to endure normal or specified
handling. We apply structural optimization to iteratively improve pattern coverage
and enhance element connections until sufficient model rigidity is reached. Finally,
the improved skeleton graph is converted to the 3D mesh representation that is ready
for fabrication.

Discussion We wish to emphasize that we allow complete overlap between elements
in the second and third step if our solver find such movement is helpful to improve the
matching quality. We only keep one copy of the entirely overlapped elements when the
iterations stop at each step. This strategy helps us to control the element number in
an implicit way. Our method will end up with a proper number of elements regardless
an initialization with excessive elements. Note that in the steps before structure
optimization, all the filigree elements are represented merely by their skeleton graph.

2.4 Pattern Synthesis
In this section we will present the details of the core algorithms of filigree synthesis,
that is the first four steps in the pipeline: (1) initialization (2) placement optimization
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(3) boosting and (4) topology cut. As these four steps mainly determine the appearance
of final output, we call them pattern synthesis in the rest context of this paper.

2.4.1 Initialization

The goal of initialization is to distribute the instances of the exemplar elements
such that there is sufficient coverage of the base surface. Furthermore, it is required
that each element is well connected with its neighboring elements. Our initialization
method follows the dart-throwing approach in blue-noise sampling problem [52]. A
fixed point of each exemplar filigree element is picked as its reference point. We
repeatedly generate sample points on the base surface by dart throwing around the
boundary of the existing elements. For each sample point generated, the instance is
kept only if it overlaps with some existing elements and the overlapping area satisfies
certain conditions to be elaborated below; otherwise it is rejected and another sample
point is generated. This is repeated until the entire base surface is sufficiently covered
and no more element can be added.

Specifically, let Si denote the current instance of the element that newly generated.
Then Si is accepted if and only if all the following conditions are met: (1) The
overlapping area of Si with the union of all the existing elements is no more than 60%
of the area of Si; (2) The overlapping area of Si with any of the existing elements is
no more than 30% of the area of Si; and (3) The overlapping area of Si with at least
one of the existing instances is no less than 10% of the area of Si. These conditions
ensure that the newly accepted element covers some previously uncovered regions of
the base surface, while having sufficient overlap with the existing elements to ensure
close connection between adjacent pieces. If the base surface has a control field, each
generated element should be rotated and scaled as dictated by the control field before
testing its overlap with the existing elements.

To ensure unbiased distribution of the exemplar filigree elements in the case that
multiple exemplars are provided as input, we follow the strategy in [52] for multi-class
blue noise sampling to pick the next trial pattern from the class that is currently
most under-filled. Furthermore, a pattern element of a larger size is given a lower
priority to be picked. Here, the size of an element pattern is defined to the diagonal
length of the bounding box of the pattern.
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(a) (b)

Figure 2.4 (a) Covering region of non-convex element. (b) Overlapping region (shown in
blue) between two neighboring elements. The vertices of the polygons of the two elements
(shown in red and green) are the input point sets to compute the modified Hausdorff
distance.

2.4.2 Pattern Matching Energy

The randomly distributed pattern elements generated by initialization often have
highly undesirable visual artifacts, although they are connected and cover the base
surface well, as shown in Figure 2.1a. These artifacts are mainly due to that most
adjacent patterns overlap in a random manner, without having their geometric features
aligned with each other. We now propose some measures on the visual quality of the
connection between adjacent elements.

First we discuss how to quantitatively measure the quality of alignment of two
partially overlapping pattern elements. For a filigree pattern element, we need to
define its covering region. If the element is convex or nearly convex, we simply take
the convex hull of the pattern to be its covering region. Otherwise, we decompose the
pattern element into several convex or nearly convex components and take the union of
the convex hulls of these components to be the covering region of the original element
(see Figure ?? as an example, the covering region is marked in blue). We developed
a user interface to allow the user to easily perform the convex decomposition of a
non-convex element.

For two partially overlapping pattern elements, we define the intersection of
their covering regions to be their overlapping region (see Figure 2.4b). Then we
measure alignment quality of these two elements by the Hausdorff distance between
the subparts of the two pattern elements within their overlapping region. Since
each filigree element is represented by its skeleton graph with edges being polygonal
curves, the evaluation of this Hausdorff distance is reduced to the computation of
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the Hausdorff distance between two finite sets of points which are the vertices of
the polygons from the two skeleton graphs that lie in the overlapping region (see
Figure 2.4b).

We adopt the modified Hausdorff distance [9], which has proven to be more effective
for shape matching purpose than the standard Hausdorff distance. For two finite
point sets U and V , their modified Hausdorff distance is defined to be

distMH(U, V ) = max( 1
NU

∑
u∈U

dist(u, V ), 1
NV

∑
v∈V

dist(v, U)) (2.1)

where NU and NV are the number of points of U and V , respectively. dist(u, V )
is the closest distance from the point u to the point set V , i.e. dist(u, V ) =
minv∈V d(u, v), where d(u, v) is the Euclidean distance between the points u and
v. The term dist(v, U) is similarly defined.

For two overlapping elements Pi and Pj , let U ′
i and V ′

i denote the set of the vertices
of the skeleton graphs of Pi and Pj, respectively, that lie in the overlapping region of
Pi and Pj. Then the matching quality of the patterns Pi and Pj is defined to be

dist(Pi, Pj) = distMH(U ′
i , V ′

i ) (2.2)

Intuitively, this term measures how well the shapes of the two filigree elements
Pi and Pj match each other within their overlapping region. Note that if Pi and
Pj do not overlap, that is U ′

i and V ′
i are both empty set, we penalize dist(Pi, Pj) to

be infinity. This setting helps to enforce pattern connections during minimizing the
global matching energy that defined below.

Now we are ready to define a global energy function, called Pattern Matching
Energy (PME), to measure the overall quality of the synthesized filigree pattern. Let
Pi denote a pattern element. Let Γ be the set of the index pairs (i, j) such that the
elements Pi and Pj are connected to each other. Γ can also be viewed as the edge set
of the connectivity graph of all the pattern elements. Let P = {Pi} denote the set of
existing patterns. Then the PME function is defined to be

E(P ,O) =
∑

(i,j)∈Γ
dist(Pi, Pj) + Θ(P ,O) (2.3)

where the first term measures the overall appearance by considering the alignment
quality of every pair of connected pattern elements. Θ is an optional application-
specific energy term, which can be cast into connectivity constraints among P or field
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constraint to follow the requirements of control field over the output domain O. Our
goal is to find an element distribution P with lowest PME value.

2.4.3 Placement Optimization

The goal of this step is to improve the initial distribution of pattern element P by
minimizing the PME energy. However, it is non-trivial to perform a meaningful
gradient descent to minimize PME in Equation 2.3 due to the non-linearity of
Hausdorff distance, not mentioning that arbitrary pattern shapes could be taken as
input. Therefore, we resort on a greedy strategy to iteratively refine the placement of
each element. In order to maintain connectivity between pattern elements, in this
step, we impose hard constraints to maintain the overlapping relationship between
element pairs. That is, the initial neighbors Ni of element Pi should at least be the
subset of its new neighbors N ′

i after placement optimization.
There are two phases of placement optimization as shown in Algorithm 1.

2.4.3.1 Stochastic Search via Translation

Stochastic search is implemented in StochasticSearch. In this phase, each element
undergoes some small translational displacement around its current position to search
for a location with a lower value of the PME energy function, indicating better
alignment of the element with its neighboring elements. These displacements are
generated by randomly sampling a number of points as the candidate positions of
the element in the neighborhood of its current location. All these sampling points
are tested and the position with the lowest PME value is returned as the optimal
position in current iteration. Note that for each candidate position, we need to rotate
and scale the element according to the underlying control field before computing the
pattern matching energy.

In order to satisfy the hard connectivity constraints, we first find the neighbors Ni

of Pi in GetNeighbors before updating its position. During stochastic search, we
observe that some new neighbors N ′

i of Pi may result from the candidate positions.
Such new neighboring relation is accepted, as long as it yields the smallest PME value.
Note that during stochastic search, we record data (i.e. relative position, class ID etc)
of all element pairs that have been traversed and output as connection database D
for the learning purpose in the following boosting step.
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Algorithm 1 PlaceOptim
Require:

Input surface model S; Initial placement of pattern set P on S; Input control
field F on S

Ensure:
An optimized pattern placement PO following F on S that conforms to both
input connectivity constraints and control field F ; A connection database D that
records all element pair with their matching quality;

1: Π ← BuildConnectivityGraph(P);
2: {Ωi} ← IndependentSet(Π);
3: while true do
4: for each Ωi ∈ {Ωi} do
5: for each Pj ∈ Ωi do
6: Ni ← GetNeighbors(Pi, Π);
7: StochasticSearch(Pi, Ni);
8: accept ←SmoothConnection(Pi);
9: if accept then

10: update the shapes of Pi and its neighboring elements;
11: end if
12: end for
13: end for
14: P ← Update();
15: if converged or enough # of iterations reached then
16: break;
17: end if
18: end while
19: return PO = P ;
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(a) (b)

Figure 2.5 (a) A double intersection and a small gap between neighboring elements are
forced to be in tangent contact by deformation in our algorithm. The moving control points
are shown in green while the red ones are fixed control points. (b) Tangent contacts are
achieved after non-rigid deformation.

2.4.3.2 Smooth Connection via Non-rigid Deformation

During placement optimization, although each pair of overlapping elements are aligned
better than before, we observe that their geometric features could often match better
to be visually more pleasing if the elements can be modified by a non-rigid deformation
of limited amount.

We encourage tangent connection throughout our synthesis pipeline as it is one
of most visually pleasing manners to join two neighboring elements. There are two
cases, as shown in Figure 2.5, that deserve special treatment. That is, (1) the two
curves have two intersection points that are close to each other; and (2) the two
curves segments are separated by a narrow gap. In both cases we use non-rigid
deformation to bring the two curves into tangential contact with each other. In case
(1), the tangential contact keeps the connection between the two elements but make
them contact in a smoother way, thus improve the visual quality of the synthesized
pattern. In case (2), the forced tangential contact eliminates the narrow gap, thus
again improves the visual appearance of the pattern design, and introducing a new
pair of connected elements, if that didn’t exist before.

The details of deformation method are elaborated in Section 2.8.2. Basically,
we achieve non-rigid deformation via moving/fixing a set of control points. Take
Figure 2.5a for instance, we first connect the intersection points with a line. The
moving control point (shown in green) is picked on the skeleton graph that has the
closet tangent with the line slope. The fixed control points (shown in red) are those
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Figure 2.6 (a) Pattern distribution and (b) its corresponding node graph.

intersections points with other neighboring elements that do not need to be changed.
We then apply the deformation to achieve tangential contacts by matching the moving
control points to their projections on the connecting line while letting the fixed control
points remain still. See Figure 2.5b.

Distortion Measurement. As non-rigid deformation may introduce great distor-
tion, we define a cost function to measure the degree of distortion. Given a pattern
element P that is discretized into N dense sample points {pi ∈ P, 1 ≤ i ≤ N}. We
use a distance matrix DP = (dij)N×N to encode the shape of P , where dij is the
distance between pi and pj . Obviously, DP is independent of translation and rotation.
Suppose P is transformed into P ′ and we can compute distance matrix DP ′ = (d′

ij)
in a similar fashion. Then we measure the distortion of P ′ with regard to P using the
standard deviation of {d′

ij

dij
, i ̸= j} as the cost function, which gives the measurement

on the acceptance/rejection of the deformation.
This phase is implemented in SmoothConnection (Algorithm 1) which performs

the deformation and returns the flag of accepting the such deformation based on
distortion measurement. If the cost of deformation is lower than a tolerance threshold,
we update the shapes of Pi and its neighboring elements accordingly.

Updating Sequence If all elements are updated simultaneously, one problem is
that elements updated according to neighbors are also changing. We use an updating
sequence based on independent set. First, all the elements are divided into several
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(a) Initialization (b) After placement optim. (c) After boosting

Figure 2.7 Illustration of the effect of each step.

independents sets such that any two elements in the same set are not connected
(as illustrated in Figure 2.6b). Then the elements in each set are updated before
processing those in the next set. This idea is similar to the subpass strategy in [21],
which greatly improves their correction performance. Our experiments showed that
the convergence of this strategy is much better than using a depth-first or breadth-
first processing order in the connectivity graph of the elements. Indeed, one may
also adopt a random order to traverse all the elements to optimize their positions;
however, our scheme has the potential advantage of allowing parallel processing in
this time-consuming task of optimizing all the elements in multiple rounds, since
it is ensured that any two elements in the same set are always not connected so
can be updated simultaneously without producing conflicting updated positions. In
Algorithm 1, BuildConnectivityGraph computes the connectivity graph among
input elements. IndependentSet then generates the independent sets afterwards.

Figure 2.7 shows how the initial layout of the pattern elements is improved after
the step of placement optimization.

2.4.4 Boosting

Because the minimization of the PME function is a difficult nonconvex and combina-
torial optimization problem, the resulting pattern layout after placement optimization
may still leave some pairs of connected elements with unsatisfactory alignment.
Specifically, while the hard constraint in the preceding step is helpful to maintaining
the connectivity of the synthesized filigree pattern, it makes our search prone to
getting trapped in a poor local minimum, thus hampering the ability of finding a
better pattern layout with an even smaller PME energy value. For example, the
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Algorithm 2 Boosting
Require:

Input surface model S; Input pattern set P on S; Input control field F on S;
Connection Database D;

Ensure:
An output pattern placement PO that resembles the good spacing example in D
while maintaining sufficient connectivity;

1: D′ ← FilterCandidatePairs(D);
2: while TRUE do
3: Π ← BuildPatternConnectionMap(P);
4: {Ωi} ← IndependentSet(Π);
5: // Selection Phase
6: for each pattern Pi ∈ Ωi do
7: candidate set Ci := ∅;
8: Ni ← find neighbors of Pi;
9: for each neighbor Pj ∈ Ni do

10: bj ← FindBoostingVector(Pi, Pj, D′);
11: Ci := Ci ∪ bj;
12: end for;
13: Ci = Ci ∪ Average(Ci);
14: // Learning Phase
15: Attempt all boosting vector bj ∈ Ci and assign Pi with the one with lowest

PME value.
16: end for
17: if converged or enough # of iterations reached then
18: return PO = P ;
19: end if
20: end while

element placement shown in Figure 2.7b cannot be further optimized by placement
optimization.

We remedy this issue by using a boosting strategy that replaces a pair of elements
with unsatisfactory alignment by the same pair with better alignment, while relaxing
the constraint that the connectivity of each involved element with its neighboring
element be the same as before. Hence, this operation enables us to search for a
better pattern layout starting from a new local initialization. In other words, the
boosting step aims to improve pattern distribution by providing better local pattern
connectivity so that subsequent application of placement optimization can jump out
of a poor local minimum. The boosting step is further followed by another round of
placement optimization. These steps are iterated until convergence or a satisfactory
result is obtained.
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The pseudo-code of boosting is illustrated in Algorithm 2. Specifically, there are
two phases of implementing this boosting strategy.

Selection Phase During the massive search in preceding step of placement op-
timization, nearly all pairs of adjacent elements with good alignment have been
collected and kept in the database D. The goal of selection phase is to select can-
didate boosting vectors that for the learning in the next phase. Before selection
phase, we filter out those element pairs with low matching quality in FilterCandi-
datePairs (Algorithm 2). Specifically, we only kept those pairs with best matching
quality (typically top 5% out of all the items in our implementation) and obtained
a filtered database D′. While updating Pi, we collect boosting vectors from all its
neighbors Ni in the candidate set Ci. We denote the relative position between (Pi, Pj)
as νij = pj− pi, where pi and pj are the local coordinates of Pi and Pj within a locally
parameterized surface domain. Similarly, for a candidate pair (P̄i, P̄j) ∈ D′, we can
define its relative position vector ν̄ij . Then the similarity metric between (Pi, Pj) and
(P̄i, P̄j) is formulated as |νij − ν̄ij|2. For each Pj ∈ Ni, we query D′ with the element
pair (Pi, Pj) to find its best matching pair (P̄i, P̄j) with the smallest similarity metric
value (i.e. the most similar one). The relative position ν̄ij of the best match pair
(P̄i, P̄j) is returned as the boosting vector bj corresponding to Pj. Note that Pi and
P̄i are the same element (so are Pj and P̄j), but the pairs (Pi, Pj) and (P̄i, P̄j) may
have different relative vectors. We also append the average vector of all the candidate
boosting vectors in Ci as an additional boosting vector (Line 11 in Algorithm 2).

Learning Phase The second phase is to learn from candidate boosting vectors.
For each learning attempt, we translate each element with the boosting vector. Note
that, since the displacement by the boosting vector does not have to preserve the
previous connectivity, there may be significant loss of connection between patterns.
When that occurs, we will enhance the connectivity by forcing some nearby pairs of
elements to be connected to each other using non-rigid deformation (using identical
method in Section 2.4.3.2). We compute the PME value resulting from each boosting
vector and keep the one with highest score.

Stopping Criteria We stop the iteration of Placement Optimization and Boosting
if there is no significant change in the synthesized layout. Specifically, we compute
the sum of element translation in each iteration and terminate the iterations if it is
below a threshold.
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(a) (b) (c) (d)

Figure 2.8 (a) Short protruding segment (in red) will be trimmed off. (b) Overlapping of
similar features will lead to conflicting branches (blue and red). (c) Topology cut result of
(b). (d) The blue subgraph has higher importance than the red one as it is inside a loop.

2.4.5 Topology Cut

After the steps of placement optimization and boosting, there may still exist misalign-
ment between some connected elements and such misalignment are mostly manifested
as the intersection of conflicting branches from the two involved patterns. To resolve
this issue, we develop an effective scheme, called topology cut, for trimming off some
conflicting branches within the overlapping region of such two pattern elements.
Figure 2.8 shows how this kind of misalignment is resolved by topology cut to improve
the visual quality of the output.

We consider two cases in our topology cut scheme: (1) trimming off a short
protruding curve segment when two curves intersect at one single intersection; and
(2) trimming off some branches when there are more than one intersection points that
are close to each other. In case (1), as shown in Figure 2.8a, we simply detect the
protruding curve segment that is shorter than some threshold (shown in red) and
trim it off.

However, a more elaborate treatment is needed to deal with case (2), where the
branches for the two pattern elements intersecting each other in a more complicated
manner. Consider two connected patterns, denoted P and Q, whose skeleton graphs
intersect at a number of points, ti, i = 1, 2, . . . , m (purple dots in Figure 2.8b). Using
the intersection points ti as cutting points, we decompose each skeleton graph into a
number of subgraphs. Then the conflicting branches from P and Q are two of these
subgraphs. For example, each pair of blue and red branches in Figure 2.8b are two
curve segments sharing the same endpoints. We shall next assign an importance score
to each of these two subgraphs and remove the subgraph with lower importance score.
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The importance score of a subgraph in this context is defined as follows. Suppose
that the skeleton graph G(P ) of the pattern P is decomposed by the intersection
points ti into a collection of connected subgraphs Gk, j = 1, 2, . . . , n. Intuitively, a
subgraph Gk receives a lower importance score, i.e., is less important, if (i) Gk has
a small size, measured in the total length of all its edges, denoted as L(Gk); or (ii)
Gk is located near “frontier" of its supergraph G(P ). (The “frontier" of a skeleton
graph is understood to be the set of all the valence-1 vertices.) Regarding the latter
consideration, we observe that, usually, Gk is near the “frontier" of G(P ) if one of
the subgraphs of G(P ), excluding Gk itself, has a small size. Hence, we measure the
proximity of Gk to the “frontier" of G(P ) by F (Gk) = minj ̸=k{L(Gj)}.

Finally, summarizing the two considerations above, we define the importance score
of the subgraph GK as

I(Gk) = αL(Gk) + βF (Gk), (2.4)

where α and β are weighting coefficients. We use α = β = 1 in our implementation.
Figure 2.8d provides an example to compare the importance scores of two subgraphs
of a skeleton graph. Hence, given two conflicting branches that are represented by two
subgraphs from the two connected pattern P and Q, we first evaluate the importance
scores of the two subgraphs by Equation (2.4), with respect to their own supergraphs
G(P ) and G(Q), respectively. Then we keep the subgraph with the higher importance
score, and trim off the other.

2.5 Structural Optimization
During structural optimization, we iteratively detect weak regions and reinforce these
areas. This iterates until the shape is strong enough. The user can manually specify
the initial thickness of model and external force profiles. The external forces are
pressure forces from the outside, applied on all shell elements. The force profiles could
be easily changed to match different scenarios.

Our structural optimization contains two phases. In the first phase, we apply
structural analysis to detect mechanically weak regions of the reconstructed surface
mesh (see Section 2.6 for more details on mesh reconstruction) based on the synthesized
filigree design. New pattern elements are then inserted into the weak regions to create
denser coverage and connections. We then re-synthesize the result throughout previous
stages based on the new pattern layout. We define the weak node as the one with
Von Mises stress larger than yield strength σyield. The first phase is repeated until the
portion of weak nodes is below a threshold (typically 0.5% in our implementation).
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See Figure 2.9 for an example showing how the mechanical strength of a synthesized
filigree pattern is enhanced after the first phase.

After strengthening local weak parts, we obtain a balanced structure with respect
to both gravity and external forces. We then iteratively increase the thickness of
model in the second phase, by 10% in each iteration, until no weak nodes are detected.

Our structural optimization tries to strengthen the weak parts first before increas-
ing the thickness of model. This pipeline is based on our observations in experiments
that if we increase the model thickness first, the weak regions cannot be totally
removed even when the thickness is increased significantly. However, we observe that
if we strengthen weak regions first to obtain a uniformly balanced structure, the
strength of the model can be greatly improved with a small increase in thickness,
which leads to faster convergence.

Finite Element Simulation In order to accelerate structural simulation, we apply
numerical simulation on open surface mesh with shell element analysis. This treatment
leads to faster simulation for two reasons: (1) The generation of volume mesh with
specified thickness is time-consuming, while the thin shell model based on a 2D surface
mesh can be generated much faster. In fact, a surface mesh with a preset thickness
is a good approximation to a closed mesh for the purpose of structural simulation.
(2) The computation for analyzing shell elements is much faster than conventional
methods based on volume elements [63].

We simulate the elastic material with the properties of commonly used printing
materials, typically ABS or PLA plastic. We use Von Mises for stress simulation
which is formulated as

σ̄ = 1√
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 (2.5)

where σi(i = 1, 2, 3) represents the eigenvalue of the stress tensor. The stress
tensor field is calculated from the displacements and rotations at all nodes of input
model, following a standard procedure of finite element analysis [3].

Figure 2.9 shows the intermediate results of structural optimization. As seen
from the results, the weak regions (shown in red) are greatly reduced after structural
optimization. We also present a complete comparison in Section 2.8.3.1 that demon-
strates the mechanical properties of all tested models before and after structural
optimization.
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Figure 2.9 Top: From left to right, synthesis result before and after adding more element
connections to strengthen weak parts. Bottom: Color coded stresses results during
structural optimization. Left: Before structural optimization. Middle: After strengthening
local weak regions. Right: After increasing model thickness. The bunny model is courtesy of
of Stanford 3D scanning repository.

2.6 Reconstruction
We reconstruct the printout model, represented as a polygonal mesh, in two steps:
(1) generate a hallowed surface mesh according to the composite skeleton graph and
the width function defined on it; and (2) reconstruct a printable mesh with specified
thickness via an offsetting operation.

2.6.1 Surface Mesh Reconstruction

Based on the skeleton graph and the width function, we can recover a set of contours
C = {C1, C2, · · · , Ck} bounding the solid area that should be kept; See Figure 2.10a.
For the i-th triangle T of the base triangle mesh, we perform the 2D boolean
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(a) (b) (c)

Figure 2.10 Pattern baking: (a) The input contours, (b) The boolean intersection between
a triangle and the input contours, and (c) Constrained Delaunay triangulation of the
intersecting region.

intersection between T and the composite contour C; See Figure 2.10b. After that, we
build the constrained Delaunay triangulation of the region T

⋂ C and get a collection
of subtriangles Ti = {T1 ∈ T, T2 ∈ T, · · · , Tni

∈ T}; See Figure 2.10c. Performing the
boolean operation all over the base mesh yields a triangle pool ⋃

i Ti that actually
gives the baked mesh Mb defined by the synthetic pattern elements. Note that Mb

serves as both the input of stress analysis and the base mesh for generating a printable
mesh with specified thickness.

2.6.2 Final Mesh Generation

Suppose that a thickness function τ(·) has been specified on a surface Mb. We
compute the bounding surface Mτ

b of the volume induced from the pair (Mb, τ). For
a point p in R3, there always exists a closest point q ∈Mb. We say p lies inside the
volume Mτ

b if and only if

∥p− q∥ ≤ τ(q)
2 (2.6)

and
(p− q) · Normal(q)

∥p− q∥
= 1, (2.7)

where Normal(q) is the surface normal at q. Equation (2.7) serves only when q is
located on the open boundary of Mb. Or alternatively, we can use

F (p) ≜ ∥p− q∥2 − τ(q)
2 (p− q) · Normal(q) ≤ 0 (2.8)

to define the volume ofMτ
b . Sometimes we prefer inflating the point q to all directions,

rather than only along Normal(q), when q is located on the open boundary. And in
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(a) (b) (c) (d) (e) (f)

Figure 2.11 With the filigree synthesis technique proposed in this paper applied to input
surfaces (b) and (f), the generated models (c-e) generally present more fascinating and
aesthetic appearance than the base models. Note that the primitive filigree patterns used
for (c-e) are shown in (a), whose backgrounds are respectively painted in blue, orange and
green. The input models in (b), (d) and (f) are courtesy of Kevin Xu, Open3DModel and
PinShape, respectively.

this case, F (p) reduces to

F (p) ≜ ∥p− q∥2 − τ 2(q)
4 ≤ 0. (2.9)

We use the Poisson surface reconstruction [17] to extract the triangle mesh approxi-
mating the surface F (p) = 0, which is the boundary surface of the virtual model for
fabrication.

2.7 Results

2.7.1 Basic Synthesis

We first present some synthesis results in 2D planar domain for validation. Figure 2.12
shows a variety of results generated by our method. As seen from the results,
our algorithm generates smooth connections between patterns via either tangent
connections or overlapping their similar features.

Since we formulate filigree synthesis as dense packing problem with appearance
constraints, we compare our results with the state-of-art packing method [13] in
Figure 2.14. As shown in Figure 2.14, conventional packing method cannot guarantee
full connections between adjacent elements thus fails to satisfy the printable criteria.
Moreover, the packing method tends to randomly place the element since it cannot
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(a) (b)

(c) (d)

Figure 2.12 Single-class synthesis results on 2D in which a variety of different elements
are used as input.

(a) (b)

Figure 2.13 Multi-class synthesis results on 2D planar domain.



32 Synthesis of Filigrees for Digital Fabrication

(a) (b) (c)

(d) (e) (f)

Figure 2.14 Comparisons with the packing method in [Hu et al. 2016].
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exploit the partial shape similarity between elements to form smooth connections.
Our method, on the other hand, is capable to ensure all the elements are connected
in one piece while naturally join them without noticeable artifacts.

By allowing partial overlapping with good shape alignment, our method smoothly
connects adjacent patterns of different shapes. Figure 2.13 demonstrates our syn-
thesis results when multiple-class patterns are specified as input. Here, our method
automatically detects the similar parts between different patterns and join them in
a natural way. In Figure 3.12c, different filigree elements are used for synthesis on
different parts of a vase. All these exemplar pattern elements are from actual filigree
jewels. These results show that our method is capable of producing high-quality
filigree decorations.

2.7.2 Control Field Editing

Our method can adapt the size and orientation of pattern elements according to
an underlying control field on the base surface. Figure 2.15 shows different control
fields on a 2D domain and the corresponding synthesized filigree pattern. Clearly,
the pattern elements change their size and orientation according to the control field,
while maintaining natural connections between adjacent elements.

Figure 2.16 shows a field-controlled synthesis result on a dress model. The control
field here consists of an orientation field and a scaling field. We have developed a
user interface to let the user specify the orientation field by sketching lines on the
surface mesh, as shown in yellow curves in Figure 2.16a. We then generate a smooth
orientation field by treating the sketch lines as constraints. Here the code from [8] is
used to build the orientation field. The user can specify the scaling field by drawing
closed regions on the base surface and assign scaling values to the designated regions.
Then the scaling values are propagated to the entire domain via error diffusion.

Our method also supports boundary-aware synthesis in that we only synthesize a
filigree pattern within a selected region. We observe that proper boundary handling is
important in boundary-aware synthesis in order to produce satisfactory results.Hence,
we add additional constraints to encourage pattern elements next to the domain
boundary to have tangential contact with boundary curves. This can easily be achieved
within our framework by applying proper translation and limited deformation during
pattern synthesis.
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(a) (b)

(c) (d)

Figure 2.15 Results of field controlled synthesis in 2D planar domain. For each row, the
input control field is shown on the left. The control field is visualized using line integral
convolution (LIC), where the color encodes the scaling of the elements (red - larger scale;
blue - smaller scale) and the orientation is illustrated by streamlines.
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(a) (b) (c)

Figure 2.16 (a) User interface. User can easily design the control field via sketching lines
(yellow with red dots) on the surface mesh to define the orientation field and assigning
scale values to hand-drawn (blue lines with red dots) regions to design the scaling field.
(b) Control field. An example control field generated by user which is the input field for
the synthesis result in (c). (c) We support constrained synthesis within the user-specified
regions. The synthesized elements are well aligned to the boundary and transformed
according to the input control field. The input dress model is courtesy of Open3DModel.

(a) (b) (c)

Figure 2.17 2D Synthesis results with different percentages of each element class.
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(a) (b) (c)

Figure 2.18 Synthesis results with different percentages of each element class in 3D.

2.7.3 Class Number Control

For multi-class synthesis, our method is capable of controlling the percentages of
different classes of elements that appear in the final output. Figure 2.17 shows a series
of results with an increasing number of flower patterns until it becomes a case of
single-class synthesis. This is mainly achieved in the initialization step, in which the
initial pattern distribution is generated. We adopt the class control strategy in [52].
According to Equation (1) in [52], the pattern with larger size will have lower priority
to sample from. We control the percentage of each class by multiplying a scaling
factor to the size of the pattern. If the scaling factor of an element is set to infinity,
then that element will not appear in the output domain which makes single-class
synthesis possible.

To achieve uniform distribution among different classes of elements, we penalize the
overlap area if one element overlaps with an instance of the same element. Specifically,
overlapping with the same class of elements will lead to higher overlapping ratio,
thus will be rejected with higher probability. Figure 2.18 shows three examples of
decorating the outer shell of a vase with different percentages of the flower and leaf
patterns.
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Figure 2.19 Prototypes printed by Stratasys Fortus 400mc and EOS FORMIGA P 110.

2.7.4 Fabrication

Figure 2.19 shows the printouts of our synthesis results. Note that the base elements
remain easily identifiable on the surfaces while the element connections are smooth
and robust even in highly curved regions, e.g. the bunny ears. The powder-based 3D
printers present challenges on the model as the printout is very fragile when removed
from the powder basin. However, our model is successfully printed with thin features,
due to effective structural optimization.

2.8 Implementation and Performance

2.8.1 Input and Parameters

The input model of our method is a triangular mesh. All computations (e.g. modified
Hausdorff distance) are done on a locally parameterized 2D surface patch. Each
pattern has an up vector, which we maintain aligned with the underlying vector field
to rotate elements along the surface. The patterns are mapped back to the surface
mesh, so they naturally bend with the input model.

Our method is fully automatic but there are two main parameters that would
affect the final results: (1) the threshold σf to filter element pairs based on matching
quality. We typically use 5%. Larger values would lead to more randomization in the
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Parameters Bunny Lamp Dragon Vase Vase Dress
σf 5.0% 4.5% 5.0% 5.0% 4.5%
σd 0.15 0.13 0.15 0.17 0.16

Table 2.1 Parameters used in all tested models.

(a) (b)

Figure 2.20 (a) A 2D bicubic Bézier surface patch covers the skeleton, with its control
points regularly distributed. The specified points (in red) must be moved to corresponding
destinations (in green). (b) The soft constraints to avoid large distortions are also taken
into account by moving the control points.

output; (2) the control of the distortion σd during deformations. A larger tolerance
leads to larger deformations. We typically use 0.15. A complete list of the values
employed for each model is shown in Table 2.1.

2.8.2 Deformation

For filigree synthesis problem, there is no strict requirement that the filigree element
be kept in shape and size. Hence, we take the flexibility of slightly deforming filigree
elements and develop non-rigid deformation method that is extensively used in our
framework to enable smooth tangential contact and improve alignment of partial
overlaps. Our method is fast because it needs only to solve a linear system of equations
without iterative computation.

In the context of filigree synthesis, we need to deform a given pattern element P

into another pattern shape P ′ with the following constraints: (1) Hard constraints.
Some selected points pk, k = 1, 2, . . . , m, on P are mapped to some designated
corresponding points p′

k on P ′. (2) Soft constraints. The shape of P ′ is similar to that
P as much as possible, not allowing a large distortion in any local or global subpart
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of the pattern element. Note that the deformation is applied to skeleton graphs, the
internal representation of filigree patterns.

Our deformation method follows the spirit of 2D free-form deformation using a
bicubic Bézier surface patch [38] to deform the region containing a filigree element.
Specifically, given a pattern element S to be deformed, we use a rectangular bounding
region to cover P and define a bicubic Bézier surface patch S0(u, v) with its array
of 4 by 4 control points p0

ij, i, j = 0, 1, 2, 3, being regularly positioned within the
bounding rectangular region, as shown in Figure 2.20. Since its control points p0

ij are
regularly distributed, S0(u, v) reduces to an affine mapping between the parameter
space (u, v) and the output domain space (x, y) in which the filigree element S lies.
Hence, for an arbitrary point q0

k = (xk, yk) of the output domain, it is easy to find its
corresponding unique parameter values (uk, vk), with q0

k = S0(uk, vk). With the fixed
parameter values (uk, vk), the initial control points p0

ij will be replaced by variable
control points pij during the deformation process, so the point q0

k = (xk, yk) will be
mapped to qk = S(uk, vk), where S is the new bicubic Bézier surface patch.

We now consider the following four types of constraints applied to the deformation.

Type 1. Suppose that we want to map some selected points q0
k on the pattern P to

their corresponding points qk, k = 1, 2, . . . , m. Then we have the constraints

ak ≡ S(uk, vk)− qk = 0, k = 1, 2, . . . , m. (2.10)

Note that S(uk, vk) is a linear combination of the unknown control points {pij}.

Type 2. We wish to keep the domain containing the pattern P to be deformed
as little as possible. Therefore, we impose the “soft” constraint that any three
consecutive control points that are equally spaced in the initial setting to still keep
being equally spaced. Let pi,j, pi′,j′ and pi′′,j′′ denote three such control points, with
pij lying between the other two. Then this constraint is expressed as

cij ≡ pi,j −
1
2(pi′,j′ + pi′′,j′′) = 0. (2.11)

Type 3. Recall that the skeleton graph of a filigree pattern is represented by
polygonal curves. To keep the shape and orientation of the skeleton graph under
deformation, we first require that each straight-line segment of the skeletal element
keep its original direction as much as possible. Let v0

i , v0
j be two consecutive vertices

of the skeleton graph before deformation and let vi, vj be their corresponding points
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after deformation. Then we impose

dij ≡ (vi − vj)− τij(v0
i − v0

j ) = 0 (2.12)

where τij is the scaling factor between the two parallel vectors. Note that the points
vi and vj are not new variables but are expressed as functions of the variable control
points pij. However, the scaling factors are new variables and they need to be
regularized as follows to prevent excessive shape distortion of the skeleton graph.

Type 4. We assume that the scaling factors {τij}, imposed on the segments of the
skeletal element, smoothly change on the domain of interest. Suppose the segment
v0

i v0
j , with a scaling factor τij, has h neighboring segments, i.e. sharing an endpoint

with v0
i v0

j , whose corresponding scaling factors are τ 1
ij, τ 2

ij, · · · , τh
ij, we have

gij ≡ τij −
1
h

(τ 1
ij + τ 2

ij + · · ·+ τh
ij) = 0. (2.13)

Then we form a constrained linear least squares problem by including the hard
constraints of type 1 with Lagrange multipliers, and the other soft constraints of
types 2, 3 and 4 using penalty terms. Let S denote the set of control points pij and T

denote the set of scaling factors τij . Then the resulting objective function to minimize
is

F (S, T ) =
∑

k

θkak + λ1
∑
ij

c2
ij + λ2

∑
ij

d2
ij + λ3

∑
ij

g2
ij (2.14)

where θk are Lagrange multipliers for the constraints ak = 0 of type 1, and λ1, λ2, λ3

are weighting coefficients of the other penalty terms. In our implementation we take
λ1 = 2, λ2 = 60 and λ3 = 0.5. Because F (S, T ) is quadratic with regard to the
variables S and T with linear constraints ak = 0, it can be minimized efficiently by
solving a linear system of equations with a sparse coefficient matrix.

2.8.3 Quantitative Analysis

2.8.3.1 Stress

We compare the stress distribution of all input models before and after structural
optimization in Figure 2.21. The horizontal axis shows the intervals of Von Mises
stress while the vertical axis is the percentage of nodes lying in each interval. The yield
stress of the plastic material used in our models is 40MPa. As seen from Figure 2.21a,
before structural optimization, there exist weak nodes (stress larger than 40MPa) in
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(a) Before structural optimization (b) After structural optimization

Figure 2.21 Stress distribution of all tested models before and after structural optimization.

resulting models. However, no weak nodes are detected after optimization thanks to
stronger pattern connection and increase of model thickness (as shown in Figure 2.21).

2.8.3.2 Matching Energy

Figure 2.22 shows the energy curve of appearance optimization with respect to
iterations. The y axis is the pattern matching energy normalized by pattern number.
Note that each iteration contains both placement optimization (Section 2.4.3) and
boosting (Section 2.4.4). The matching energy generally decreases as the number of
iterations increases, thus gradually improve the appearance. The jumps seen in the
curves are due to new pattern connections added in structural optimization. The
iterations would stop if the stopping criteria (Section 2.4.4) is satisfied. Normally,
models covered by less and simpler patterns will converge faster. As seen from
Figure 2.22, all tested models are stably converged to low PME values.

2.8.4 Timing

Table 2.2 summarizes the statistics of some synthesis results in 2D. When the number
of patterns runs between 20 and 60, all the results are produced within 3 iterations.
The computing time of 3D synthesis results are shown in Table 2.3. Unlike the 2D
case, most of the computation time is spent on computing the local parameterizations
of local surface patch. Thus, the computing time is highly related to the number of
vertices and faces on the mesh surface. The results reported above were produced on
a PC with Intel i7-4770 CPU and 16GB RAM.
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2D Result #Ele #Iter ttotal 2D Result #Ele #Iter ttotal

Fig. 2.12a 31 2 10.2 Fig. 2.13a 34 2 13.7
Fig. 2.12b 25 2 6.6 Fig. 2.13b 57 3 25.3
Fig. 2.12c 28 2 8.3 Fig. 2.15b 32 2 11.3
Fig. 2.12d 20 2 11.4 Fig. 2.15d 32 2 11.9
Fig. 2.14c 28 2 7.9 Fig. 2.17a 41 2 16.2
Fig. 2.14f 23 2 7.3 Fig. 2.17b 35 2 14.2
Fig. 2.17c 26 2 8.0

Table 2.2 Statistics of all the 2D synthesis results shown in the paper. The iteration
number refers to the number of iterations for pattern synthesis, including both placement
optimization and boosting. The timings are in seconds.

3D Model # V #F # E #Isyn #Isct tsyn tsct

Bunny 57154 114304 242 6 2 630 186
Lamp 4679 9098 75 5 2 138 36
Dragon Vase 29891 59786 521 8 3 1182 246
Vase 5419 10787 129 5 2 252 72
Dress 8172 16117 316 7 2 792 198

Table 2.3 Statistics of some 3D synthesis results, showing the number of vertices, the
number of faces, the number of elements, the number of iterations of pattern synthesis, the
number of iterations of structural optimization, timings for pattern synthesis, and timings
for structural optimization (in seconds).
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Figure 2.22 Energy curve of appearance optimization of all input models.

2.9 Conclusions
We have proposed a new method for filigree synthesis based on a Pattern Matching
Energy (PME) function, equipped with a stochastic optimization strategy, to guarantee
that the output model is sufficiently connected, visually artifact-free and structurally
strong for fabrication. Our method also allows for flexible user controls, such as the
scale and orientation of pattern elements on the base surfaces.

Our method, in its current form, cannot handle those pattern elements that lack
an obvious skeletal representation, e.g. the chessboard texture, or the case where
a good local alignment between the input pattern elements cannot be found. In
addition, the optimization phase is still time consuming due to the mesh reconstruction
required by mechanical simulator. Future works include how to support a greater
variety of pattern types and investigation into the possibility of conducting structural
optimization directly on the skeleton graph.





Chapter 3

Fabricable Tile Decorations

3.1 Introduction
Additive manufacturing is paving the way to mass customization, enabling anyone to
create her own version of a base product, customizing it in surprising and beautiful
ways. In addition, with the wide availability of 3D printers in FabLabs and homes,
users can fabricate their customized objects directly, in a wide variety of colors and
materials. However, customizing objects is a difficult task for non-expert users, for all
but very simple modifications. Thus, there is a significant research effort dedicated to
enabling computational support for customization of shapes. For instance, researchers
have focused on balancing shapes [35], creating spinable objects [2], turning surfaces
into physical filigrees [4], designing wind instruments [24, 46], lampshades [59] and
helping users maintain fabricability during modifications [41].

In this paper we focus on bringing a popular type of decoration to customization
for 3D printing: patterns obtained by packing together distinct decorative elements, or
tiles. Such patterns are ubiquitous in fashion and design, but are also popular among
hobbyists as they are obtained by juxtaposing existing decorations, e.g. stickers or
decals. Our objective is to enable non-expert users to decorate surfaces with a set of
flat tiles. Taken together, the tiles form a 3D network that outlines the same volume
as the initial surface, and can be fabricated using a home printer (see Figure 3.12).
The problem is challenging as the tiles must be closely packed such that connectors
can be inserted, while approximating the original surface well.

In addition to the core packing problem, it is worth considering how the output
can be fabricated. One could imagine printing the result as a single piece. However,
the final shape is a shell-like object that typically occupies a large volume compared
to its actual material usage, and has many overhanging features. This makes the
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parts quite inefficient to print. In particular, on the printers most widely available
for home users – filament printers – large amounts of additional support structures
would be required. Support removal and cleaning makes printing much less enjoyable,
and increases time and material costs. While some printers do not require supports
(e.g. powder bed systems like selective laser sintering), print efficiency on large hollow
objects is less than optimal: such devices are most efficient when printing a batch of
parts at once. Hollow shapes occupy a large volume while using little material, and
thus severely reduce the efficiency of batch printing.

We design our approach to take into account these fabrication issues. Instead of
producing a single, final part, we exploit the fact that the final object is a network
of tiles joined by small connectors. In particular, these connectors do not have to
be rigid. Neighboring tiles can be allowed to rotate with respect to one another, as
long as they finally lock into a stable shape. The connectors are natural places where
we can cut the design, and later assemble it back through the use of snap-fit joints.
Therefore, our approach produces the final design as a set of disjoint flat patches, that
are printed independently and later assembled. This completely removes the need for
support, alleviates print bed size limits, and significantly improves print efficiency.
The final assembly is left to the user, however it is a much more enjoyable operation
than cleaning support.

3.2 Previous Work
Art and design. As early adopters of additive manufacturing, artists are constantly
pushing the boundaries of fashion and design. Among the many examples of this trend,
Nervous System has produced beautiful flexible designs made of many interconnected
triangles – the resulting objects are bracelets, necklaces or even full dresses. The
flexibility is obtained by placing hinges in between the triangles of a densely tessellated
initial flat surface. As a result, the designs can be printed flat, pre-assembled, on
low-cost printers.

While this is a key inspiration for us – in particular showing the importance of
taking into account printability concerns in the design itself – our goal is different.
We seek to produce 3D structures made of packed, arbitrary shaped tiles. We do not
have a base flat contour to work from, and we approximate a target 3D surface.

Pattern synthesis. Several recent works consider the problem of decorating sur-
faces to turn them into printable objects, with the same purpose of customization for
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3D printing. Zhou et al. [62] synthesize connected patterns along curves, and use their
approach to model fabricable 3D objects. Dumas et al. [10] modify texture synthesis
to account for structure and rigidity, and synthesize printable 3D patterns that cover
a base surface. Chen et al. [4] synthesize filigree-like structures along surfaces. Their
approach is closest to ours since the input is a set of base elements and a target surface.
However, they relax the packing problem by allowing appearance-preserving overlaps
between elements. This produces very appealing patterns, but cannot guarantee their
base shape is preserved, and thus forbids the use of patterns with a semantic meaning
(e.g. a fish, a heart, a letter). Zehnder et al. [56] explore the interactive design of
curve networks onto surfaces. The user positions curve elements (visually similar to
a bended wire) onto a surface. The curves are simulated as elastic rods, giving a
very natural feel to their deformations, while intersections are disallowed to preserve
their appearance. Tight packings are achieved thanks to deformations. This approach
produces beautiful, airy curve networks that can be fabricated on high-end printers.

All the aforementioned techniques output complex yet hollow 3D geometries that
are challenging to print. In contrast, our approach strives to produce an easy and
efficient to print output.

Packing onto surfaces. Packing of arbitrary shaped elements into the plane is an
extensively researched topic important to many industries (e.g. textile). However,
packing on surfaces is less explored. Lai et al. [20] and Dos Passos et al. [33, 32]
proposed methods for creating mosaics on surfaces using convex planar tiles. Hu et
al. [13] recently proposed an approach for surface mosaics that supports irregular
planar tiles. It operates through iterated continuous and combinatorial steps. Other
techniques consider pattern distributions by locally mapping 2D elements (i.e. decals)
onto surfaces, e.g. [23, 37, 51]. These are less suited to our needs as we seek to
preserve the planarity of the packed elements.

In this work we use the approach of Hu et al. [13] as a comparison baseline
regarding packing quality. It is worth noting, however, that the problem settings are
different. The aforementioned techniques are geared towards mosaicking, where large
numbers of relatively small tiles are placed. We instead have to use fewer tiles, large
with respect to object curvature, to accommodate for fabrication constraints.

Fabrication from sheets and wires. Several recent works focus on helping users
fabricate shapes from simpler materials. Miguel et al. [29] optimize wire sculptures
that approximate input surfaces. Iarussi et al. [15] present an approach for wire
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jewelry design. Other approaches consider fabrication from paper or similar planar
sheets. The original surface is unfolded into charts [40] or strips [30, 44] which can be
cut, folded and assembled to approximate the input. Fabrication from flat surfaces
has also been studied for modeling large objects from laser cut wood pieces [7], for
modeling tight-fit cloths from 3D scanners by automatic flattening [58], to fabricate
surfaces that self-fold under the action of heat [19], and for fabrication from wire
mesh sheets [11] and auxetic planar materials [18].

While our approach shares the idea of assembling from planar patches, our problem
setting is very different as we consider networks of rigid planar tiles along the surface,
and exploit 3D printed hinges to fold patches into shape.

3D printing large objects. Solutions have been proposed for printing large objects,
which either do not fit the printer, or occupy a large volume compared to their material
use.

A first set of methods decompose a shape into smaller parts, for later assembly
[26]. Other methods additionally consider how to pack the parts together for printing
[48, 5, 1]. Wang et al. [50] decompose objects into smaller parts for maximizing
print quality, changing the print direction of each sub-part. Finally, Song et al. [42]
decompose large objects into small pieces that are 3D printed and then fixed to an
internal, laser-cut structure.

The tile packings generated by our approach are not an ideal input for the
aforementioned methods, as cross sections are thin everywhere. By proposing a
method specifically tailored to our outputs, we are able to introduce rotational
degrees of freedoms between tiles and can fully unfold large patches, maximizing print
efficiency.

3.3 Overview
Our approach starts from a set of user-specified irregular tiles, and a target surface
represented by a triangular mesh S. The output is a set of foldable patches that
could be printed flat without support. Each is made of interconnected tiles and can
be assembled with other patches into an approximation of S (see Figure 3.12).

We refer to the surface assembled from the synthesized tile patches as the tile
network (as illustrated in Figure 3.8a). The tile network is optimized to approximate
the target surface with minimal error. The user can optionally specified a desired tile
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(a) Top view, attached (b) Top view, detached

(c) Top view (d) Bottom view

Figure 3.1 (a,b) Hinge joint. (c,d) Snap-fit joint. Note how the connector of snap-fit joints
is printed vertically.

scale along the surface. Orientation is not controllable as it is optimized for better
approximation of S.

Fabrication Constraint. In order to connect adjacent tiles, parts of the tiles need
to be carved out so as to insert joints (as shown in Figure 3.1). The tiles may contain
narrow features and concavities. Therefore we take care to position the tiles such
that they face each others along sufficiently large areas, allowing for the joints to
be inserted. Please note that our approach does not support tiles that are thin
everywhere, e.g. thin wire–like structures, as they offer no space for connectors.

3.3.1 Pipeline overview

Our framework mainly consists of two steps: tile packing and patch extraction. During
tile packing, tiles are densely packed over the base surface. The initial surface fits
entirely below the output of our algorithm, so that the result can cover it. Each tile
is aligned with the tangent plane passing through its centroid.

Unlike a conventional packing problem which solely focuses on maximal surface
coverage [13], we seek to produce a dense packing of irregular tiles that 1) satisfies
fabrication constraints and 2) follows the target surface as closely as possible. This
results in a complex optimization problem, with both continuous and combinatorial



50 Fabricable Tile Decorations

aspects. We therefore propose a dedicated optimization that can jointly optimize the
positions, scales and orientations of the tiles in order to meet fabrication constraints,
maximized approximation and packing objectives. We detail the tile packing in
Section 3.4.

After packing, we divide the tile network into several flat, foldable patches. We
resort on two types of joints for connecting the tiles: hinge joints (Figure 3.1a), which
allow rotations between two connected tiles, keeping their inter-distance constant; and
snap-fit hinge joints (Figure 3.1c), that are printed disconnected and later assembled
to connect tiles within and across patches. For the sake of clarity, we refer to the
later type of joints simply as snap-fits. After assembly, hinges and snap-fits result in
distance constraints between the tiles, locking the assembled patches into a stable
surface in most cases. The details of patch extraction are discussed in Section 3.5.

3.4 Tile Packing
In this section, we detail our approach for tile packing. Dense packings of irregular flat
tiles (mosaicking) cannot be optimized via traditional gradient based approaches [13].
Compared to mosaicking, we also face additional constraints: fabrication imposes the
use of fewer tiles that are relatively large compared to surface curvature (this stems
from limitations in minimal printable feature size and maximum object size). This
makes packing even more difficult, especially as the tiles remain flat and rigid. We
also have to ensure that the tiles are neighboring in a way that allows the insertion of
hinges and snap-fits.

Our approach is based on a two-phase attract-and-repulse mechanism that itera-
tively refines an initial layout towards our goal. During the attraction phase adjacent
tiles are attracting each others to form tangent contacts among themselves, while tiles
are added to cover the surface. During the repulsion phase, each tile is encouraged to
repel its neighbors and adaptively scale its size until a uniform inter-spacing among
tiles is achieved.

3.4.1 Tile representation

We input tiles as 2D closed boundary polygons in the XY plane, with the origin at
their centroid. During optimization, we only consider a sampling of the contours, as
shown in Figure 3.2b. We use two different sampling for performance reasons: the
finest is a sampling with a spacing of 2 mm, the coarsest is a sampling with a constant
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(a) Input tile (b) Sampled contour points

Figure 3.2 The tiles are represented by samples along their contour.

number of 20 samples per tile. The 3D geometry of the tiles is reconstructed during
post-processing. The tiles may only be uniformly scaled during optimization, and are
otherwise kept rigid.

3.4.2 Initialization

We initialize the tile distribution following multi-class blue noise sampling [52]. New
tiles are placed around the boundary of existing tiles, in a process that resembles
dart-throwing. We accept a new tile position if it satisfies both of the following criteria:
(1) it does slightly overlap with existing tiles; and (2) the overlapping ratio with
each existing tile is below a given threshold. This encourages a dense initialization –
overlaps are resolved later. We also optimize the orientation of each newly positioned
tiles so as to increase the possibility of placing hinges between neighbors. We postpone
the discussion of this optimization to Section 3.4.3.2.

When using different classes of tiles, we found it necessary to explicitly encourage
mixing. Specifically, for tiles belonging to different classes the overlap area should
not exceed 20% of the area of the tiles, while the threshold is reduced to 5% for tiles
of the same class. This encourages tiles from different classes to be neighbors while
prohibiting tiles of a same class from staying too close, which is demonstrated in
Figure 3.6a.

This process is repeated until a maximum number of trials has been reached (1500
in our implementation).
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3.4.3 Attraction phase

This first phase distributes and optimizes the position of the tiles to bring them closer
together. The variables are the number of tiles, the position of their centroid along
the surface, their size (uniform scaling), and their orientation (angle around normal).

plane of Ti

plane of Tj

projection plane

pi

p’i

pj

p’j

Figure 3.3 Common projection plane of Ti and Tj (side view).

3.4.3.1 Objective function

The objective function is a combination of three terms: neighborhood distance, local
surface approximation and orientation.

Neighborhood distance. We define the set of direct neighbors Ni of a tile Ti

as the set of tiles that are overlapping Ti, e.g. Ni = {Tj|Ti ∩ Tj ̸= ∅, j ̸= i}. The
intersection is tested after projecting each tile to a common projection plane, which
is orthogonal to the bisector plane of the support planes of Ti and Tj (dashed line in
Figure 3.3).

We define the neighborhood distance between a tile Ti and its neighborhood Ni

as:
dist(Ti,Ni) = max

pj∈PNi

(dist(pj, Ti)) (3.1)

where PNi
is the point set formed by the union of all the sample points of the tiles

in Ni that lie inside Ti (green dots in Figure 3.4). dist(pj, Ti) returns the shortest
distance of point pj to the boundary of Ti. Since Ti and the tiles in Ni are not
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coplanar, we project the points in PNi
onto the plane of Ti to perform all the distance

computations. dist(Ti,Ni) evaluates to a large value if Ni = ∅ (i.e. Ti has no overlaps).
Intuitively, minimizing dist(Ti,Ni) encourages Ti to be attracted to adjacent tiles

while preserving a minimum overlap (tangential contact) when tiles come together.

Figure 3.4 Samples for the neighborhood distance (green dots).

Local surface approximation. The tiles are aligned with the tangent plane of
the base surface S at their centroid. In high-curvature regions this quickly leads to
large deviations from S. We penalize such configurations by defining the following
approximation error for a tile Ti:

approx(Ti,S) = max
pi∈Ti

(dist(pi,S)) (3.2)

where dist(pi,S) returns the (Euclidian) distance from point pi to the closest point
on S. Low values of approx(Ti,S) indicate a better local approximation of S by Ti.

Orientation. Tile orientation is important both for the surface approximation and
for fabrication. In particular, this will determine where the hinges can be added
between neighboring tiles.

The capacity of holding an hinge is measured using the local shape thickness – a
notion similar to the shape diameter defined in [39]. For a 2D shape, we define the
shape thickness at a boundary point p as the diameter of the maximal ball centered at
the medial axis and tangential to p (as shown in Figure 3.5a). Larger values indicate
that it is more likely that an hinge can be placed at this location.

Whenever considering adjacent tiles (overlapped or not), we would like them to be
oriented such that the potential connection points have large local shape thicknesses.
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p1 p2

(a) Non-overlapping tiles

2 p1p

(b) Overlapping tiles

Figure 3.5 Potential joint positions. (a) Local shape thickness. The medial axis of each
shape is outlined by a dashed line. The medial balls at p1 and p2 are drawn in blue. (b) In
case of overlap p1 and p2 are the midpoints of the orange and green segment, respectively.

For non-overlapping tiles (Figure 3.5a), the connection points to place an hinge are
the two nearest points between the tile contours. As tiles may be overlapping during
optimization, we predict the connection points of such cases as the middle point of
the curve segment contained in the other tile (Figure 3.5b). We denote the orientation
score for a tile Ti as Θ(Ti,Ni): it is computed as the sum of the local shape thicknesses
for all potential contact points between Ti and its neighbors.

Objective function. We finally define the global attraction objective function
Eattract:

Eattract = α
∑

i

dist(Ti,Ni) + β
∑

i

approx(Ti,S)−Θ(Ti,Ni) (3.3)

Eattract is a weighted sum of the distance, local approximation and orientation terms,
where α and β are controlling the tradeoff. We set α = 1.0 and β = 1.5 in our
implementation. β is set larger than α to penalize positions in high-curvature regions.

During the first phase, our goal is to find a tile configuration with the lowest value
of Eattract.

3.4.3.2 Minimization

Eattract is a non-linear, combinatorial objective function. We therefore rely on a
greedy strategy to locally optimize the configuration of each tile. The pseudo-code
for minimization is detailed in Algorithm 3. It takes the following steps:
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Position update. In PositionUpdate each tile is translated to a number of
candidate positions (including the current position), searching for a displacement
producing a lower value of Eattract. The candidate positions are randomly sampled
within the minimal circle centered on the centroid and fully enclosing the tile. We
test 400 positions in our implementation. The position with lowest value is used to
update the tile in the current iteration. Note that if the user provided a scale control
field, the tile is resized before computing Eattract at each tested position.

In regions of high-curvature it is likely that no good update can be found, as
the tile plane misaligns with the surface. When all the candidate positions for a
tile Ti produce an approximation error approx(Ti,S) greater than a threshold τapprox,
the tile is shrunk at its current position. This favors smaller tiles in high curvature
regions. A minimum size constraint prevents tiles from becoming too small. τapprox is
determined before starting the attraction phase. The approximation errors of all tiles
are computed and sorted. τapprox is the average error of the top 20%.

Angle update. Function AngleUpdate optimizes the orientation of each tile.
Each tile is tested with different orientations while its centroid remains fixed. Among
the 360 tested rotation angles, we consider the top n with the lowest value of Eattract

as the candidate orientations (n = 10 in our implementation). Among these, we select
the angle that provides the best opportunity to insert an hinge, that is the angle that
maximizes the sum of local shape thicknesses between the tile and its neighbors.

Updating sequence. We process tiles in parallel, updating the tile positions in
independent sets similarly to the mechanism in [4].

Increasing the surface coverage. The minimization of Eattract leads to a compact
packing of existing tiles, uncovering other parts of the surface. Therefore, after position
and orientation optimization we add tiles to uncovered regions in AddMoreTiles.
This is done similarly to the initialization. The attraction phase stops if no more tiles
can be added.

3.4.4 Repulsion phase

The second phase of the tile packing focuses on resolving overlaps that remain after
the attraction phase. In particular, we adaptively scale each tile according to its
distance to adjacent tiles, and encourage repulsion among neighboring tiles to evenly
distribute tile inter-spacing. A target gutter size d is given as input to the algorithm.
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Algorithm 3 Attraction
Require:

Target Surface S; Initial placement of tile set T on S; Input scale field F on S.
Ensure:

Optimized tile configuration TO that follows F on S.
1: while true do
2: T ← PositionUpdate(T , F);
3: T ← AngleUpdate(T );
4: stop ←AddMoreTiles();
5: if stop then
6: break;
7: end if
8: end while
9: return TO = T ;

(a) Initialization (b) Attraction phase (c) Repulsion phase

Figure 3.6 Intermediate results in different steps of our algorithm.

Our algorithm iterates until there is no overlap between any two tiles and the minimal
gutter distance is larger than or equal to d (1 mm in our implementation).

3.4.4.1 Objective function

We first define a repulsion term between two tiles Ti and Tj:

repulse(Ti, Tj) = min{min
pi∈Ti

sdist(pi, Tj), min
pj∈Tj

sdist(pj, Ti)} (3.4)



3.4 Tile Packing 57

where sdist(pi, Tj) is the signed closest distance from point pi to the point set sampled
from Tj’s contour:

sdist(pi, Tj) =

−minpj∈Tj
∥Γ(pi)− Γ(pj)∥ if pi inside Tj

minpj∈Tj
∥Γ(pi)− Γ(pj)∥ otherwise

(3.5)

where Γ(p) projects the point onto the common projection plane of Ti and Tj, as
illustrated in Figure 3.3.

The sign of repulse(Ti, Tj) indicates whether Ti and Tj overlap with each other
(negative values imply an overlap). The absolute value of repulse measures how deeply
Ti and Tj penetrate each other if they overlap, or how far they are separated from
each other if they do not.

During the repulsion phase we seek to maximize the value of repulse between
each tile Ti and its adjacent neighbors Ai. Note that this neighborhood is different
from the one used during the attraction phase, denoted by Ni (Section 3.4.3.1). Ai

is defined as Ai = {Tj|repulse(Ti, Tj) < σ, j ̸= i}, that is, the set of tiles closer to
Ti than a threshold distance σ. This is illustrated in Figure 3.7 (σ = 6 mm in our
implementation).

We then define the final objective function as:

Erepulse =
∑

i

min
Tj∈Ai

repulse(Ti, Tj) (3.6)

Maximizing this objective increases the distance between each tile and its adjacent
neighbors.

3.4.4.2 Maximization

We resort on a similar strategy as in Section 3.4.3.2 to maximize Erepulse. Algorithm 5
details the procedure, which executes the following steps:

Scale update. To eliminate gaps and overlaps between tiles we adaptively scale
them according to the distances to their adjacent neighbors. The pseudo code for
ScaleUpdate is given in Algorithm 4. We measure the size of a tile as the diameter
of the smallest enclosing circle centered on the centroid.

ComputeDistance returns di, the smallest value of repulse (Equation 3.4)
between a tile and its adjacent neighbors. Assuming that the current size of Ti is si,
we compute in ComputeNewScale the expected size of Ti in the next iteration as
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Figure 3.7 The adjacent neighborhood (in red) of the black tile are all the tiles surrounding
it while being closer than a threshold.

ki = si + (di − d)/2.0, where d is the target gutter distance. We divide (di − d) by
two as Ti and its nearest neighbor change in size simultaneously. After the expected
size is computed for all tiles, ScaleToExpectedSizes applies the actual scaling
operations.

Algorithm 4 ScaleUpdate
Require:

Input tile layout T on S, target interspacing distance d;
Ensure:

Updated tile layout TO with size adaptively scaled.
1: K := ∅; // vector that stores expected size of each tile
2: for each tile Ti ∈ T do
3: Ai ← FindAdjNeighbors(Ti);
4: di ← ComputeDistance(Ti, Ai);
5: ki ← ComputeNewScale(Ti, di);
6: K ← K ∪ {ki};
7: end for
TO ← ScaleToExpectedSizes(T , K);

8: return TO;

Position and orientation update. We follow a similar strategy as in Algorithm 3
to locally update the positions and orientations of the tiles. However, during each
iteration, we seek to search for updates that maximize Equation 3.6.
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Termination. At each iteration we track the minimum distance between closest
neighbors dmin. If this value is larger than or equal to the target gutter distance d

the process terminates – all tiles are far enough from their neighbors. Otherwise,
the iterations continue up to a maximum value. The overall process is illustrated in
Figure 3.6c.

While there is no strict guarantee that the process converges, we never observed
cases where the maximum number of iterations is reached: after initialization and
attraction phase there is only a limited amount of overlap, and these can be resolved
without having to apply excessive scaling to the tiles.

Algorithm 5 Repulsion
Require:

Target Surface S; Input tile distribution T on S; Target interspacing distance d;
Input magnitude field F on S.

Ensure:
Optimized tile configuration TO that follows F on S.

1: while true do
2: T ← ScaleUpdate(T );
3: T ← PositionUpdate(T , F);
4: T ← AngleUpdate(T );
5: dmin ←CheckDistance();
6: if dmin ≥ d or maximum iterations reached then
7: break;
8: end if
9: end while

10: return TO = T ;

3.5 Patch Extraction
We now consider the problem of connecting tiles with hinges and snap-fit joints, thus
forming patches that can be fabricated flat, folded and assembled to form the final
3D shape. The set of potential hinges are the connections between a tile Ti and its
adjacent neighbors in Ai (see Section 3.4.4.1 and Figure 3.7). For two neighboring
tiles, the potential location of a hinge is in-between the two closest points along the
contours. We use the neighborhood information to create a graph G that captures
the tile network. Each tile Ti is a node, and one edge is added for each adjacent
neighbors Tj in Ai (see Figure 3.8b). This graph is very densely connected since the
tiles are packed.
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(a) Tile network (b) Tile graph

Figure 3.8 Tile network and its corresponding graph. Note that (b) only shows the graph
for the tiles that are visible in (a). The red edges in (b) form a spanning tree of the graph.

This section focuses on two questions: (1) how to segment the tile network into
foldable patches (Sections 3.5.1 and 3.5.2) and (2) how to assign and optimize the
hinge placement so that the final assembled printout is fabricable and possibly stable
(Section 3.5.3).

What we mean by stable, is that the tiles are all locked in place with respect to
one another. This possibility stems from the fact that taken all together the joints
create a dense set of distance constraints between the rigid tiles. These constraints
hold the tiles into a stable configuration – a property which is expected for a closed
convex polyhedron through Cauchy’s rigidity theorem, but may not generally be true
(e.g. a flat surface). Our algorithm attempts to preserve this property while trying
to reduce the number of joints (Section 3.5.3.1). Note that if the shape is not stable
even when inserting all joints, the final result can still be fabricated but will exhibit
unconstrained degrees of freedom.

3.5.1 Extracting foldable patches

Let us consider a case where the tile graph G is a tree – it is easy
to observe that it could be unfolded: Each hinge separates the
graph in two distinct parts which can rotate freely around the
hinge axis with respect to one another. This notion is similar
to the foldability of the triangulation dual, where triangles are
nodes and edges are hinges [31], as illustrated in the inset. The
unfolding might however produce overlaps in the plane.
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We build upon this idea and formulate patch extraction as a graph partitioning
problem: we seek to partition the graph G into a set of spanning trees such that each
tree can be unfolded.

3.5.2 Graph partitioning

We now describe how to partition the graph G (Figure 3.8b) into a set of spanning
trees. There are two fabrication requirements for the graph partitioning problem.
First, the size of the unfolded geometry of each patch cannot exceed the extent of
the printer bed; second, the unfolding should not produce overlaps between tiles. We
propose a method to grow each patch in sequence while considering the properties of
its unfolded geometry.

We decorate the graph with edge weights. Each edge weight indicates the capability
c(i, j) to insert a hinge between Ti and Tj at two points pi and pj as described in
Section 3.4.3.2 and Figure 3.5. c(i, j) is equal to the average local shape thickness.

In practice the hinges require smaller footprints than the snap-fits (see Figure 3.1).
Therefore, we encourage edges with lower c(i, j) to become hinges. We thus seek to
extract a minimal spanning tree from G such that the edges with lower c(i, j) belong
to the tree.

In the following, whenever selecting an edge to become a hinge (or snap-fit) we
first check whether the value of c(i, j) is large enough to host the joint, and ignore
the edge otherwise. Note that most edges can host a joint: the packing algorithm
specifically optimizes tile orientations to achieve this.

We grow patches with the following process. We start from a tile selected randomly.
We then locally grow a subgraph by breadth-first expansion. At each step of the
growth, we extract a minimal spanning tree and verify whether the tree unfolding is
valid, in which case we continue growing the subgraph. The unfolding is valid as long
as it does not produce an overlap between tiles and it fits the printer bed size. If the
unfolding is not valid, we return the last valid spanning tree as the next patch, and
start extracting a new patch. This is done until all tiles have been covered.

3.5.3 Snap-fits optimization

After patch extraction the set of hinges is fully determined (edges of the spanning
trees). However, the number and placement of snap-fit joints is not fixed yet. This
affects both the model stability and its printability.
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Ideally, we would like to minimize the number of snap-fits: they have to be manually
assembled, and using too many is likely to result in non-printable configurations
as they cannot be hosted in the tiles. However, each snap-fit introduces a new
distance constraint in the final assembly, working towards locking the result in a
stable configuration. We thus seek for a proper amount of snap-fit joints so that the
final printout is both fabricable and stable.

Note that some tile networks simply cannot be made stable: this depends on the
input surface properties (see discussion in the introduction of Section 3.5). In this
section we assume that the tile network is stable if all possibly snap-fit joints are
inserted – thus, our objective during the snap-fit joint selection process is to preserve
this property. If a surface cannot be made stable, all possible snap-fit joints will be
inserted.

3.5.3.1 Snap-fit edges selection

A necessary condition for the assembled printout to lock in a stable configuration is
to have loops in the connection graph – otherwise any leaf tile would be able to rotate
freely along its hinge. In addition, smaller loops increase the set of constraints, further
reducing the number of degrees of freedom in the assembly. Based on these simple
observations, we optimize the selection of snap-fits to ensure each tile is captured
inside constraint loops of small size.

During the algorithm we check the stability of the assembly by using a physics
simulation (based on Bullet Physics), verifying whether the tiles remain fixed in space
under the effect of gravity. The lowest point of the object is fixed to the ground as
we are not interested in checking for balance. If the largest displacement exceeds 5
mm we consider the model unstable.

Algorithm 6 details the process. The input consists of the graph G and the set of
edges that are already selected as hinges. The remaining unselected edges become
a pool for selecting snap-fits, see Figure 3.9a. We filter out any edge in which tiles
could not host a snap-fit. We refer to edges that could become snap-fits as available.

The first step in Algorithm 6 is to construct initial loops so that each tile node is
captured within a certain cycle. This is implemented in ConnectLeafNodes. We
search all leaf nodes (degree 1) and add an additional available edge to them, favoring
closest neighbors. As the graph is densely connected, and as the packing is optimized
to maximize the possibility to place joints, there is a very high likelihood that such
an edge exists. This is illustrated by the green dashed segments in Figure 3.9b.
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Algorithm 6 SelectSnapFits
Require:

Graph G; A set of hinge edges E; Snap-fit hinge pool P ;
Ensure:

Result stability fstb; A set of edges F in G that will be realized by snap-fits.
1: k ← 15; fstb ← true;
2: G′ ← ConnectLeafNodes(E);
3: while true do
4: {Ci} ←DetectMinimalCycles(G′);
5: (F , G′) ← EnhanceLargeCycles({Ci}, k, P );
6: stable ← TestStability(F , E);
7: if stable then
8: break;
9: else

10: if F == P then
11: fstb ← false;
12: break;
13: else
14: k −−;
15: end if
16: end if
17: end while

return (fstb, F );

After removing leaf nodes, all tiles belong to cycles. The next step is to achieve a
denser connectivity. DetectMinimalCycles detects the minimal cycles {Ci}. The
value of k determines the maximal accepted length for the cycles. If a cycle Ci is longer
than k, more edges are added to it by searching for available edges connecting pairs of
nodes in the cycle, favoring closest neighbors. Thanks to the high degree of connectivity
in G many such choices exist. This process, performed by EnhanceLargeCycles,
is illustrated in Figures 3.9c and 3.9d. Finally, TestStability checks whether the
model is stable with the current set of snap-fits. If not, the value of k is decreased
and another iteration adds more snap-fits. At worst the algorithm terminates when
all available snap-fits are added.

3.5.3.2 Final joint assignments

After selecting the hinges and snap-fit joints, there might exist overlaps between
their geometries (see Figure 3.10a). Hinges require space only for one of their ends
(the other simply protrudes out of the tile). Snap-fits require space on both ends,
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(a) Input spanning trees

(b) After connecting leaf nodes

(c) After adding snap-fits, k = 6

(d) After adding snap-fits, k = 4

Figure 3.9 Adding snap-fit joints. The left column illustrates the graph, the right column
shows the physical simulation as more snap-fits are added.
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rotation cut plug cut socket cut

(a) Before optimization (b) After optimization

Figure 3.10 Effect of joint assignment optimization.

one being slightly larger as shown in Figure 3.1d. This results in a combinatorial
problem where we attempt to resolve for all conflicts, while swapping the joint ends
assignment.

We proceed in two steps described in Algorithm 7. First, the joint ends are evenly
distributed by function EvenlyDistribute. We define the "load" of a tile as the
ratio between the number of joint ends it hosts and its area. We distribute the joint
ends while attempting to achieve an even load across all tiles. We process the tiles
in a priority queue in order of decreasing load value. Each time a tile is visited,
the neighboring tiles are checked to assign the joint ends such that the load is kept
minimal.

This initial assignment might however create conflicts. To resolve these we process
the tiles in a priority queue by decreasing order of number of conflicts. A conflict can
be removed in two ways in function ResolveConflicts: the first attempted is to
swap the ends of a joint, the second is to slightly move the joint attachment along
the tile boundary. These changes can produce a conflict on a neighboring tile, and
we therefore add any new conflict to the queue. In rare cases the conflicts cannot
be resolved: this is detected whenever neither swapping nor moving the attachment
works, or when a new conflict is produced on an already processed tile. In such a case
we cancel the edge – a situation that occurred only on one edge in all our experiments
(Lamp in Figure 3.11s). Figure 3.10 shows the effect of joint assignment optimization.
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Algorithm 7 DistributeJoints
Require:

Initial placement of joints H; graph G;
Ensure:

An optimized distribution of joints Hout.
1: H′ ← EvenlyDistribute(H, G);
2: Hout ← ResolveConflicts(H′);
3: return Hout;

3.6 Implementation and Fabrication
This section gives details regarding implementation and fabrication.

3.6.1 3D model generation

To generate model for fabrication, we first unfold each patch into a set of 2D contours.
The 3D model is constructed via adding a thickness to the 2D pattern. Joints are
embedded into the model via boolean operations [49, 16].

Snap-fits internal to a patch are printed vertically – which avoids having to consider
potential collisions. Other snap-fits (across patches) are printed horizontally whenever
possible, such that the part inserted into the tile is hidden from view (this can be
seen on the printed patches in the second column of Figure 3.12).

3.6.2 Optimizations

We achieve better performance by using a coarser sampling. In particular, the
attraction phase resorts on a coarse sampling of the tiles (20 samples per tile),
followed by a first repulsion phase using a coarse sampling. After this point the
packing is almost finalized, and we perform a final repulsion phase using the finest
sampling (2 mm spacing). This second repulsion phase terminates quickly as only
small overlaps – missed by the coarse pass – are resolved. We provide timings in
Section 3.7.3.

3.7 Results
We show several results produced with our method in Section 3.7.1, discuss surface
packing quality in Section 3.7.2 and timings in Section 3.7.3.
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(a) (b) Target surface (c) Sim. result (d) Fab. result (e) Fab. result

(f) (g) Target surface (h) Sim. result (i) Fab. result (j) Fab. result

(k) (l) Target surface (m) Sim. result (n) Fab. result (o) Fab. result

(p) (q) Target surface (r) Sim. result (s) Fab. result (t) Fab. result

Figure 3.11 From left to right: input tiles, target surfaces, simulated results with each
patch color coded and fabricated results (two views).

3.7.1 Fabrication

We test our algorithm on a variety of models, from a simple sphere to a teddy bear
with high curvatures. Figure 3.12 and Figure 3.11 show our fabrication results and
their corresponding simulations. Tiles of various shapes are used to decorate the base
surfaces, including round convex shapes (e.g. sphere and egg) and concave contours
with thin features (e.g. the bird and fish pattern). We fabricate all the results using
a filament printer (Flash Forge Creator Pro) with ABS filament. All of the assembled
models correspond to their simulation and approximate the target surface well. Some
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Figure 3.12 Given a target surface and a set of user-specified tiles (top left), our method
produces a dedicated packing of tiles that is optimized for fabrication (bottom left). The
results are printed as independent flat patches (second column) with integrated hinges and
snap-fit joints. The patches are folded and assembled into the final object (third column);
in this case a functional handbag that can carry light objects.

low amount of distortion can be seen, which is essentially due to necessary tolerances
when fabricating pre-assembled joints.

Our fabrication results have a variety of uses, for instance acting as lamp shades,
vase decor (Figure 3.16) or even as a bag (Figure 3.12) that can carry light objects.
On the bag, two ring tiles are manually placed and fixed during optimization in order
to attach the handles.

Table 3.1 summarizes the statistics for each fabricated result: size of assembled
printout, number of tiles and the number of fabricated patches. The number of
patches depends on both the model size and the surface complexity. Models with
high curvatures require more patches (e.g. teddy bear).

3.7.1.1 Scale editing

Our method allows some user control, in particular over the scale of the tiles. However,
due to fabrication constraints and surface approximation the final scale may override
the user requests. Scale control is demonstrated on 2D examples in Figure 3.13.
Figure 3.15 shows scale control on a surface with a small number of tiles. This makes
it more challenging for the algorithm to follow the user intent, for instance tiles in the
top left corner have to shrink to resolve overlaps. However, the result still preserves
the overall scale trend indicated by the user. The fabricated result is in Figure 3.12.
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Figure 3.13 Packing results in 2D controlled by a scale field.
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Sphere Lamp Vase Lamp Handbag Bear
Size (17,17,16) (17,17,27) (27,27,17) (25,13,18) (22,13,21)
#T 102 126 83 122 147
#P 10 13 14 17 22

Table 3.1 Statistics of fabricated results. From top row to bottom are size of assembled
printout, number of tiles packed and number of patches used for assembly. The size is
represented as (length, width, height), all measured in centimeters.

3.7.2 Surface packing

We now consider the quality of our packing result with respect to the recent work
of Hu et al. [13]. In particular we want to verify that taking into account the
fabrication constraints does not penalize packing quality significantly. We perform
two comparisons: the first is based on the inputs from [13] (egg results in Figure 3.14)
while another uses one of our test cases (teddy bear). We use the same amount of
tiles when comparing both algorithms.

As seen in Figure 3.14, our algorithm produces similar surface coverage (85.2%
vs 87.1%) compared to the result found in [13]. Thus, fabrication constraints do
not heavily penalize the packing. As expected, our approach performs significantly
better on the challenging packing of the teddy bear model (coverage of 77.5% vs
60.1%). Such cases are not the focus of [13] as the method targets mosaicking with
relatively small tiles. When this is not the case, [13] tends to generate smaller tiles in
high curvature regions and ends up with few tiles to cover smoother domains. This
leads to an imbalance of tile scales and leaves gaps along the surface. Our approach
achieves a more uniform distribution of scales and deals better with coarser surface
approximations. As fabrication constraints are taken into account explicitly (uniform
tile spacing and insertion of joints), the result is fabricable.

The results of [13] in Figure 3.14 use the implementation provided by the authors.

3.7.3 Timing

Table 3.2 summarizes the timing of our results. All the results are produced on
computer with an Intel i7-4770 CPU and 16GB RAM. The tile packing dominates the
runtime. The timing is mostly influenced by the number of tiles and the complexity of
the target surface. However, thanks to the coarse sampling optimization, our packing
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(a) Hu’s result, 87.1% (b) Our result, 85.2%

(c) Hu’s result, 60.1% (d) Our result, 77.5%

Figure 3.14 Comparison of surface packing with [Hu et al. 2016]. The surface coverage
rate of each result is indicated below each image. Results use the same number of tiles (287
for the egg, 147 for the teddy bear).

Time Sphere Lamp Vase Lamp Handbag Bear
tpack 8.15 9.23 6.57 11.32 15.16
tpatch 0.25 0.27 0.28 0.30 0.35
tprint 36.1 52.0 37.1 37.8 42.6
tasm 8.5 13.2 9.1 10.6 18.7

Table 3.2 Timing of each result. For each result, we show the timing of tile packing tpack,
patch extraction tpatch, printing tprint and assembling tasm. All timings are listed in minutes
expect tprint which is in hours.
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(a) Input scale field (b) Packing result

Figure 3.15 Packing result on a surface controlled by a scale field.

Figure 3.16 Fabrication results used for home decor.

algorithm is relatively fast compared to [13]. For the bear result in Figure 3.14, our
algorithm finished in 15.2 minutes while [13] took 1 hour.

3.8 Conclusions
Our approach lets anyone fabricate visually interesting objects by decorating a
surface with tiles. This mimics a popular way of improving a surface appearance by
applying stickers and decals. Rather than synthesizing a complex 3D model difficult
to print, our technique is designed to allow for efficient fabrication: the final surface is
assembled from articulated patches that print flat, without support. This makes them
fabricable on home filament printers, and easy to pack which maximizes utilization of
powder-based printers, and reduces shipment costs.
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While the assembly step is left to the user – and it does take some time – we
find the assembly to be an enjoyable process, that gives the user a better sense of
ownership on the part she customized. However, it would be interesting, as future
work, to attempt to further simplify this stage. As the scale of an input surface
grows, the number of patches increases – since the printer bed size limits the maximal
extent of a patch. Tolerances required in the fabrication of joints will also accumulate
and lead to increasingly larger distortions in the final assembly. Finally, it would
be interesting to study whether a final assembly could be made stable by gluing or
constraining the motion of a small subset of hinges.

Using our technique, users without prior expertise can model objects that fully
exploit advanced possibilities of 3D printing: embedding pre-assembled hinges and
snap-fit joints in a model, as well as producing freeform, unusual geometries. We hope
our approach will find a wide audience, and we will make the application available
for everyone to enjoy.





Chapter 4

Conclusion

In summary, in this thesis we seek to automate the task of designing patterned surface
for 3D printing and ease the printing job with high efficiency and low cost. To our best
knowledge, little research effort has been put in synthesizing non-stochastic elements
over surfaces, not mentioning the constraints of being fabricable. We present two
works aiming to synthesizing two different kinds but widely used elements: filigree
patterns and tiles. Both the of methodologies have taken into account the fabrication
constraints.

In particular, in Chapter 2, we formulate the filigree synthesis problem as a dense
packing of filigree elements with both appearance and fabrication constraints. We
leverage two properties of filigrees as the key to our solution: first, filigree elements
can be well represented by their skeletons; second, we relax the packing problem by
allowing the base elements to be partial overlapped in inconspicuously way. A novel
objection function based on Pattern Matching Energy (PME) has been proposed
for measuring the quality of synthesis. The objective is optimized via a stochastic
search strategy with a boosting step that records and reuses good configurations. We
ensure the output structure is sufficiently strong by structural optimization, which
progressively enhances the structure by adding new elements or locally thickening
the weak regions. The method supports flexible user controls that allows scaling and
orientating the elements on base surfaces.

The method presented in Chapter 2 has several limitations. It cannot handle
well elements without obvious skeletal representations, e.g. bulky tiles, or the cases
where good local alignments cannot be found. In addition, the resulting model can
only be printed by high-end SLS printer as it contains too many intricate geometries,
making it expensive to fabricate. The work proposed in Chapter 3 strives to resolve
these issues. Our approach enables fabricating visually interesting objects that are
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decorated with customized tiles. It is designed for efficient and low-cost fabrication:
the final model is assembled from several flatly-printed and foldable patches. Each
patch can be printed using home filament printers (e.g. FDM printer), making the
technique more accessible to average users. The goal is achieved by a dedicated tile
packing algorithm, which considers fabrication constraints, and a patch extraction step
that generates patches to be printed and folded. The location of hinges that connect
different patches has been optimized to achieve both foldability and printability.

There are several future works to improve the presented methods:

• The framework of filigree synthesis is time-consuming due to the mesh recon-
struction required by mechanical simulators. Investigation into the possibility
of conducting structural optimisation directly on the skeleton graph will be
extremely helpful to accelerate the job.

• For the second work, it does take some time for the users to assemble the patches.
Although we find the process enjoyable as building the parts we customized,
it would be an interesting work to further simplify this task. As the scale of
target surface grows, tolerances required in fabricating joints will accumulate
and lead to larger distortion in final assembly. Improving the design of snap-fit
connectors would be a potential future work to alleviate the distortion. Finally,
it would be interesting to investigate how the model will be stable via gluing a
minimum number of hinge connectors.
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